济南学习 Day 5 T3 pm
科普一下:
φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
设n为正整数,以 φ(n)表示不超过n且与n互
素的正整数的个数,称为n的欧拉函数值,这里函数
φ:N→N,n→φ(n)称为欧拉函数。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
若n为质数则φ(n)=n-1。
题目描述: N
问题童颜很简单。给定N,求 ∑φ(i)
i=1
输入说明:
正整数N。
输出说明:
输出答案。
样例输入:
10
杨丽输出:
32
数据范围:
对于20%的数据N<=10^5
对于60%的数据N<=10^7
对于100%的数据N<=2*10^9
#include<iostream>
#include<cstdio>
#define ll long long
#define N 10000010
using namespace std;
int n;
ll ans,f[N];
void X(ll x)
{
for(int i=;i<=x;i++)f[i]=i;
for(int i=;i<=x/;i++)
{
if(f[i]==i)
{
for(int j=i;j<=x;j+=i)
{
f[j]=f[j]*(i-)/i;
}
}
}
}
int main()
{
scanf("%d",&n);
X(n);ans=;
for(int i=;i<=n;i++)
{
if(f[i]==i)f[i]--;
ans+=f[i];
}
cout<<ans<<endl;
return ;
}
思路:筛法求欧拉函数
济南学习 Day 5 T3 pm的更多相关文章
- 济南学习 Day 3 T3 pm
仙人掌(cactus)Time Limit:1000ms Memory Limit:64MB题目描述LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的结果. ...
- 济南学习 Day 2 T3 pm
它[问题描述]N个人坐成一圈,其中第K个人拿着一个球.每次每个人会以一定的概率向左边的人和右边的人传球.当所有人都拿到过球之后,最后一个拿到球的人即为胜者.求第N个人获胜的概率. (所有人按照编号逆时 ...
- 济南学习 Day 5 T1 pm
欧拉函数(phi)题目描述: 已知(N),求phi(N). 输入说明: 正整数N. 输出说明: 输出phi(N). 样例输入: 8 样例输出: 4 数据范围: 对于20%的数据,N<=10^5 ...
- 济南学习 Day 4 T1 pm
幸运数字(number)Time Limit:1000ms Memory Limit:64MB题目描述LYK 最近运气很差,例如在 NOIP 初赛中仅仅考了 90 分,刚刚卡进复赛,于是它决定使用一些 ...
- 济南学习 Day 3 T2 pm
LYK 快跑!(run)Time Limit:5000ms Memory Limit:64MB题目描述LYK 陷进了一个迷宫! 这个迷宫是网格图形状的. LYK 一开始在(1,1)位置, 出口在(n, ...
- 济南学习 Day 3 T1 pm
巧克力棒(chocolate)Time Limit:1000ms Memory Limit:64MB题目描述LYK 找到了一根巧克力棒,但是这根巧克力棒太长了,LYK 无法一口吞进去.具体地,这根巧克 ...
- 济南学习 Day 3 T3 am
选数字 (select)Time Limit:3000ms Memory Limit:64MB题目描述LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上的数 ...
- 济南学习 Day 2 T2 pm
她[问题描述]给你L,R,S,M,求满足L≤ (S × x) mod M ≤ R最小的正整数 X.[输入格式]第一行一个数T代表数据组数.接下来一行每行四个数代表该组数据的L,R,S,M.[输出格式] ...
- 济南学习 Day 2 T3 am
[问题描述]m× m的方阵上有n棵葱,你要修一些栅栏把它们围起来.一个栅栏是一段沿着网格建造的封闭图形(即要围成一圈) .各个栅栏之间应该不相交.不重叠且互相不包含.如果你最多修k个栅栏,那么所有栅栏 ...
随机推荐
- Makefile入门教程
Makefile介绍 make是一个命令工具,它解释Makefile 中的指令(应该说是规则).在Makefile文件中描述了整个工程所有文件的编译顺序.编译规则.Makefile 有自己的书写格式. ...
- Vue+webpack+echarts+jQuery=demo
需要的插件: "dependencies": { "bootstrap": "^3.3.7", "echarts": & ...
- scss引入的问题
导入.sass或.scss文件 css有一个不太常用的特性,即@import 导入功能,它允许在一个css文件中导入其他css文件.然而,结果是只有执行到@import 规则时,浏览器才会去下载其他c ...
- JavaWeb项目实现图片验证码
一.什么是图片验证码? 可以参考下面这张图: 我们在一些网站注册的时候,经常需要填写以上图片的信息. 这种图片验证方式是我们最常见的形式,它可以有效的防范恶意攻击者采用恶意工具,调用“动态验证码短信获 ...
- for..in...时,注意hasOwnProperty验证
for..in...时,注意hasOwnProperty验证 var obj = { a: 10, b: 20 }; // 注意词句代码 Object.prototype.c = 30; var it ...
- 二、pandas入门
import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # ...
- python之道04
1.写代码,有如下列表,按照要求实现每一个功能 li = ["alex", "WuSir", "ritian", "barry&q ...
- bootstrap历练实例: 垂直胶囊式的导航菜单
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- https 调用验证失败 peer not authenticated
https 调用验证失败 peer not authenticated 报错日志: Caused by: javax.net.ssl.SSLPeerUnverifiedException: peer ...
- [LUOGU] P1024 选课
题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分,每门课有一 ...