棋盘制作 BZOJ 1057
棋盘制作
【问题描述】
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
【输入格式】
第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
【输出格式】
【样例输入】
3 3
1 0 1
0 1 0
1 0 0
【样例输出】
4
6
【数据范围】
N, M ≤ 2000
题解:
首先算出点能向上扩展的最大高度,即为height
枚举每个点,求出在保证当前点向上扩展的高度时能向左向右扩展的最大长度,即为left与right
那么正方形的边长就是left与right中的较大值与height的较小值
长方形的面积就是left和right中的较大值与height的乘积
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
int n, m, ansz, ansc, a[][], high[][], l[], r[], s[];
inline int Max(int x, int y)
{
return (x > y) ? x : y;
}
inline int Min(int x, int y)
{
return (x < y) ? x : y;
}
int main()
{
scanf("%d%d", &n, &m);
getchar();
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
a[i][j] = getchar() - '';
if(a[i][j] != a[i - ][j])
high[i][j] = high[i - ][j] + ;
else high[i][j] = ;
getchar();
}
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j) l[j] = r[j] = j;
for(int j = ; j <= m; ++j)
while(l[j] > && high[i][l[j] - ] >= high[i][j] && a[i][l[j]] != a[i][l[j] - ])
l[j] = l[l[j] - ];
for(int j = m - ; j >= ; --j)
while(r[j] < m && high[i][r[j] + ] >= high[i][j] && a[i][r[j]] != a[i][r[j] + ])
r[j] = r[r[j] + ];
for(int j = ; j <= m; ++j)
{
ansz = Max(ansz, Min(r[j] - l[j] + , high[i][j]));
ansc = Max(ansc, (r[j] - l[j] + ) * high[i][j]);
}
}
printf("%d\n%d", ansz * ansz, ansc);
}
棋盘制作 BZOJ 1057的更多相关文章
- 1057: [ZJOI2007]棋盘制作 - BZOJ
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴 ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)
[ZJOI2007]棋盘制作 时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
随机推荐
- Mybatis Learning Notes 1
Mybatis Learning Notes 主要的参考是博客园竹山一叶的Blog,这里记录的是自己补充的内容 实体类属性名和数据库不一致的处理 如果是实体类的结果和真正的数据库的column的名称不 ...
- Robot Framework(十) 执行测试用例——测试执行
3.2测试执行 本节描述如何执行从解析的测试数据创建的测试套件结构,如何在失败后继续执行测试用例,以及如何正常停止整个测试执行. 3.2.1执行流程 执行套房和测试 设置和拆卸 执行顺序 3.2.2继 ...
- nyoj-586-疯牛|poj-2456-Aggressive cows
http://acm.nyist.net/JudgeOnline/problem.php?pid=586 http://poj.org/problem?id=2456 解题思路:最大化最小值二分答案即 ...
- initWithNibName:bundle awakeFromNib 区别
initWithNibName:bundle 定义:is a message sent to a view (or window) controller in order to create the ...
- Alert and Action sheets and Timer and Animation
- Mac更改显存
今天尝试了 发现很有效果 不敢独享 所以贴一下,如果我火星了 ..就无视我吧 问题表现为: 1. 随机出现花屏,和 横线. 随机出现死机2. 随着再次渲染(例如桌面背景切换),花屏或横线会消失3. 当 ...
- XAMPP虚拟主机配置--20150423
你需要一些顶级域名访问方式来访问你本地的项目文件而不是目录方式访问,这时候就需要配置虚拟主机,给你的目录绑定一个域名(本地的话可以通过修改 hosts 文件随便绑定什么域名比如 www.a.com 或 ...
- angular 列表渲染机制
watchCollection:监听集合元素的变化,而不能监听到集合元素内部的属性变化,只要集合中元素的引用没有发生变化,则认为无变化.用这个api也可以监听普通对象的第一层属性变化. watch:监 ...
- 【chm】【windows】win7下chm打开不显示内容
修改chm属性里面,‘解除锁定’即可.点击chm文件,右键选择属性,点击最下方的解除锁定,保存,退出重新打开即可.
- Day13有参装饰器,三元表达式,匿名函数
多个装饰器: 加载顺序:由下而上 执行顺序:由上而下 有参装饰器: 闭包,给函数传参的一种方法 当装饰器内需要参数时,可以采用闭包形式给其传参,第三层函数接收完参数时,就变为无参装饰器 三元表达式: ...