[luoguP2221] [HAOI2012]高速公路(线段树)
考虑每一段对答案的贡献
用每一段的左端点来表示当前这一段,那么区间就变成了[1,n-1]
如果询问区间[l,r],其中一个点的位置为x,则它对答案的贡献为(x-l)*(r-x)*s[x](s[x]为这一段的权值)
化简后得x*s[x]*(l+r-1)-s[x]*(l*r-r)-x*x*s[x]
那么我们就需要维护x*s[x],s[x],x*x*s[x]
其中还需要预处理出来x和x*x
然后就ok了
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 500001
#define LL long long
#define root 1, 1, n - 1
#define ls now << 1, l, mid
#define rs now << 1 | 1, mid + 1, r using namespace std; int n, m;
LL s, xs, xxs, ans1, ans2;
LL x1[N], x2[N], sum1[N], sum2[N], sum3[N], add[N];
//x1表示 x
//x2表示 x^2
//sum1表示 s[x]
//sum2表示 x * s[x]
//sum3表示 x^2 * s[x] inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void push_down(int now, int l, int r)
{
if(add[now])
{
int mid = (l + r) >> 1;
sum1[now << 1] += 1ll * add[now] * (mid - l + 1);
sum1[now << 1 | 1] += 1ll * add[now] * (r - mid);
sum2[now << 1] += add[now] * x1[now << 1];
sum2[now << 1 | 1] += add[now] * x1[now << 1 | 1];
sum3[now << 1] += add[now] * x2[now << 1];
sum3[now << 1 | 1] += add[now] * x2[now << 1 | 1];
add[now << 1] += add[now];
add[now << 1 | 1] += add[now];
add[now] = 0;
}
} inline void push_up(int now)
{
sum1[now] = sum1[now << 1] + sum1[now << 1 | 1];
sum2[now] = sum2[now << 1] + sum2[now << 1 | 1];
sum3[now] = sum3[now << 1] + sum3[now << 1 | 1];
} inline void update(int now, int l, int r, int x, int y, LL z)
{
if(x <= l && r <= y)
{
add[now] += z;
sum1[now] += 1ll * z * (r - l + 1);
sum2[now] += 1ll * z * x1[now];
sum3[now] += 1ll * z * x2[now];
return;
}
push_down(now, l, r);
int mid = (l + r) >> 1;
if(x <= mid) update(ls, x, y, z);
if(mid < y) update(rs, x, y, z);
push_up(now);
} inline void build(int now, int l, int r)
{
if(l == r)
{
x1[now] += l;
x2[now] += 1ll * l * l;
return;
}
int mid = (l + r) >> 1;
build(ls);
build(rs);
x1[now] = x1[now << 1] + x1[now << 1 | 1];
x2[now] = x2[now << 1] + x2[now << 1 | 1];
} inline void query(int now, int l, int r, int x, int y)
{
if(x <= l && r <= y)
{
s += sum1[now];
xs += sum2[now];
xxs += sum3[now];
return;
}
push_down(now, l, r);
int mid = (l + r) >> 1;
if(x <= mid) query(ls, x, y);
if(mid < y) query(rs, x, y);
} inline LL gcd(LL x, LL y)
{
return !y ? x : gcd(y, x % y);
} int main()
{
LL g, z;
int i, x, y;
char c[10];
n = read();
m = read();
build(root);
while(m--)
{
scanf("%s", c);
if(c[0] == 'C')
{
x = read();
y = read();
z = read();
update(root, x, y - 1, z);
}
else
{
x = read();
y = read();
s = xs = xxs = 0;
query(root, x, y - 1);
ans2 = 1ll * (1 + y - x) * (y - x) / 2;
ans1 = 1ll * xs * (x + y - 1) - s * (1ll * x * y - y) - xxs;
g = gcd(ans1, ans2);
printf("%lld/%lld\n", ans1 / g, ans2 / g);
}
}
return 0;
}
一个longlong调了我45min,WNM
[luoguP2221] [HAOI2012]高速公路(线段树)的更多相关文章
- JZYZOJ1527 [haoi2012]高速公路 线段树 期望
http://172.20.6.3/Problem_Show.asp?id=1527 日常线段树的pushdown写挂,果然每次写都想得不全面,以后要注意啊……求期望部分也不熟练,和平均数搞混也是or ...
- BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...
- BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1219 Solved: 446[Submit] ...
- P2221 [HAOI2012]高速公路(线段树)
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...
- BZOJ 2752:[HAOI2012]高速公路(road)(线段树)
[HAOI2012]高速公路(road) Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y ...
- 【线段树】BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 627[Submit] ...
- 高速公路 [HAOI2012] [线段树]
Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个 ...
- BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 736[Submit][Status][Discuss] Descripti ...
- 【bzoj2752】[HAOI2012]高速公路(road) 线段树
题目描述 Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西 ...
随机推荐
- SQL问题:未启用当前数据库的 SQL Server Service Broker
数据库分离后,附加回到数据库,然后在程序中打开调用数据库的页面,出现如下问题:“未启用当前数据库的 SQL Server Service Broker,因此查询通知不受支持.如果希望使用通知,请为此数 ...
- http协议参数详解
整理一下http协议中的一些参数详解 截取了一个当前项目中的请求作为示例: Genaral:通用头 Request URL:当前请求的请求地址 Request Method:请求类型 get.post ...
- es的插件 ik分词器的安装和使用
今天折腾了一天,在es 5.5.0 上安装ik.一直通过官方给定的命令没用安装成功,决定通过手工是形式进行安装.https://github.com/medcl/elasticsearch-analy ...
- 利用java自带的base64实现加密、解密
package com.stone.util; import java.io.UnsupportedEncodingException; import sun.misc.*; public class ...
- java POI技术之导出数据优化(15万条数据1分多钟)
专针对导出excel2007 ,用到poi3.9的jar package com.cares.ynt.util; import java.io.File; import java.io.FileOut ...
- Spring框架针对dao层的jdbcTemplate操作crud之query查询数据操作
查询目标是完成3个功能: (1)查询表,返回某一个值.例如查询表中记录的条数,返回一个int类型数据 (2)查询表,返回结果为某一个对象. (3)查询表,返回结果为某一个泛型的list集合. 一.查询 ...
- Django2.x中url路由的path()与re_path()参数解释
在新版本Django2.x中,url的路由表示用path和re_path代替,模块的导入由django1.x版本的from django.conf.urls import url,include变成现 ...
- 【Office_Word】Word排版
文档排版的步骤: step1.先设置正文的样式 step2.再设置各级标题的样式 step3.最后在"多级列表"里设置各级标题编号 [注]最好按照这三步的顺序来排版,否则将会导致正 ...
- 使Linux支持exFAT和NTFS格式的磁盘
Linux支持exFAT和NTFS Linux系统默认可以自动识别到fat32格式的盘,但fat32支持的文件不能大于4G,所以只能将移动硬盘和U盘格式化为NTFS和exFAT这两种格式的,对于U盘最 ...
- Python-求解两个字符串的最长公共子序列
一.问题描述 给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence).比如字符串1:BDCABA:字符串2:ABCBDAB.则这两个字符串的最长公共子序列长 ...