ccpc合肥站的重现...一看就觉得是dp 然后强行搞出来一个转移方程 即 根据第i-1列的需求和i-1 i-2列的枚举摆放 可以得出i列摆放的种类..加了n多if语句...最后感觉怎么都能过了..然而不是t就是wa..最后看别人的题解 我的dp转移是9*O(n)的 常数要t..

别人的题解居然都是用模拟的..根据枚举第一列可以得出第二列的摆放姿势 由这两个摆放和第二列的需求可以求出来第三列..以此类推 最后check一下最后两个..

叉姐的题解里面写了一个dp转移方程..然而并不能看懂..放牛说用状压搞一发就行...有空再补吧..

枚举第一列的模拟版本

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<map>
#include<iostream>
#include<string>
#include<vector>
using namespace std;
#define L long long
char s[10050];
L a[10050];
L b[10050];
L d(L a){
if(a == 1){
return 2;
}
else {
return 1;
}
}
const L mod = 100000007;
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%s",s);
int len = strlen(s);
for(int i=1;i<=len;i++){
a[i] = s[i - 1] - '0';
}
if(len == 1){
if(a[1] == 1){
printf("2\n");
}
else if(a[1]==0 || a[1] == 2){
printf("1\n");
}
else {
printf("0\n");
}
continue;
}
L ans = 0;
for(L i=0;i<=2;i++){ /// 枚举第一列放多少
b[1] = i;
b[2] = a[1] - i;
L sum = d(b[1])*d(b[2]); /// 初始状态的种数
if(b[2] < 0 || b[2] > 2)continue;
for(int j=3;j<=len;j++){
b[j] = a[j - 1] - b[j - 1] - b[j - 2];
if(b[j] < 0 || b[j] > 2){
sum = 0;
break;
}
sum *= d(b[j]);
sum %= mod;
}
if(b[len] + b[len-1] != a[len]){
sum = 0;
}
ans += sum;
ans %= mod;
}
printf("%lld\n",ans);
}
}

  

HDU 5965 枚举模拟 + dp(?)的更多相关文章

  1. HDU 5965(三行扫雷 dp)

    题意是在一个 3 行 n 列的图上进行扫雷,中间一行没有雷,且中间一行的每一格都会显示周围的雷数,问根据已知的雷数在上下两行设置地雷的方法数. 分析知每一列所填雷数的和与周围的雷数有关,但每列具体的填 ...

  2. HDU 4778 状压DP

    一看就是状压,由于是类似博弈的游戏.游戏里的两人都是绝对聪明,那么先手的选择是能够确定最终局面的. 实际上是枚举最终局面情况,0代表是被Bob拿走的,1为Alice拿走的,当时Alice拿走且满足变换 ...

  3. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  4. hdu 2296 aC自动机+dp(得到价值最大的字符串)

    Ring Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  6. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  7. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  8. HDOJ(HDU).1058 Humble Numbers (DP)

    HDOJ(HDU).1058 Humble Numbers (DP) 点我挑战题目 题意分析 水 代码总览 /* Title:HDOJ.1058 Author:pengwill Date:2017-2 ...

  9. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

随机推荐

  1. SVN版本控制与分支设置

    使用SVN+Eclipse做软件版本控制. (2009年5月) 1,SVN目录结构 Trunk : 主干目录,此目录下的文件为基准文件 Branches : 用于开发的分支目录 Tags : 用于发布 ...

  2. 我对Jenkins的认识

    参考: http://www.cnblogs.com/sunzhenchao/archive/2013/01/30/2883289.html

  3. BZOJ4590——[Shoi2015]自动刷题机

    1.题意:题意很简洁吧,就不概括了 2.分析:我思考了半天,我猜答案满足单调...没敢写,看了题解去问Claris为啥单调,Claris一句话" 因为n越大明显不可能做更多题 ", ...

  4. Deep Learning入门视频(上)_一层/两层神经网络code

    关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: #coding:cp936 #建立单层神经网络,训练四个样本, import numpy as np ...

  5. [转]TextView maxWidth maxLength maxEms 区别

    maxWidth=”80dp” 限制TextView最大宽度.必须与layout_width=”wrap_content”搭配使用,当指定layout_width为其他值时,maxWidth会失效. ...

  6. WCF X.509验证

    1.证书的制作 makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=ParkingServer -sky exchange -pe makecert. ...

  7. myeclipse6.5注册机

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public ...

  8. yii模块下面的组件

    模块的定义就不写了,直接进入主题看目录和文件: application/modules/client/controllers/UserController.php <?php class Use ...

  9. QTableWidget去除选中虚边框

    m_tableWidget->setFocusPolicy(Qt::NoFocus); //去除选中虚线框

  10. [MongoDB]Mongo基本使用:

    汇总: 1. [MongoDB]安装MongoDB2. [MongoDB]Mongo基本使用:3. [MongoDB]MongoDB的优缺点及与关系型数据库的比较4. [MongoDB]MongoDB ...