Scalar Queries CodeForces - 1167F (计数,树状数组)
You are given an array $a_1,a_2,…,a_n$. All $a_i$ are pairwise distinct.
Let's define function $f(l,r)$ as follows:
- let's define array $b_1,b_2,…,b_{r-l+1}$, where $b_i=a_{l-1+i}$;
- sort array $b$ in increasing order;
- result of the function $f(l,r)$ is $\sum\limits_{i=1}^{r-l+1}b_i\cdot i$.
Calculate $\Bigg(\sum\limits_{1\le l\le r\le n}f(l,r)\Bigg )mod(10^9+7)$, i.e. total sum of $f$ for all subsegments of $a$ modulo $10^9+7$.
可以得到$a_x$的贡献为
$\sum\limits_{\substack{a_i<a_x\\ i<x}} i\cdot (n-x+1)+\sum\limits_{\substack{a_i<a_x\\ i>x}}x\cdot (n-i+1)+x\cdot (n-x+1)$
#include <iostream>
#include <cstdio>
#include <algorithm>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
using namespace std;
typedef long long ll; const int N = 1e6+10, P = 1e9+7;
int n, a[N], b[N];
ll c[N], cnt[N];
void add(int x, int v) {
for (; x<=n; x+=x&-x) c[x]+=v;
}
ll query(int x) {
ll r = 0;
for (; x; x^=x&-x) r+=c[x];
return r%P;
} int main() {
scanf("%d", &n);
REP(i,1,n) scanf("%d",a+i),b[i]=a[i];
sort(b+1,b+1+n);
REP(i,1,n) a[i]=lower_bound(b+1,b+1+n,a[i])-b;
REP(i,1,n) {
cnt[i] += query(a[i])*(n-i+1)%P;
add(a[i], i);
}
REP(i,1,n) cnt[i] += (ll)i*(n-i+1)%P, c[i] = 0;
PER(i,1,n) {
cnt[i] += query(a[i])*i%P;
add(a[i], (n-i+1));
}
ll ans = 0;
REP(i,1,n) ans+=cnt[i]*b[a[i]]%P;
printf("%lld\n", ans%P);
}
Scalar Queries CodeForces - 1167F (计数,树状数组)的更多相关文章
- Sereja and Brackets CodeForces - 380C (树状数组+离线)
Sereja and Brackets 题目链接: CodeForces - 380C Sereja has a bracket sequence s1, s2, ..., *s**n, or, in ...
- codeforces 597C (树状数组+DP)
题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...
- Codeforces 597C. Subsequences (树状数组+dp)
题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...
- HDU 6348 序列计数 (树状数组 + DP)
序列计数 Time Limit: 4500/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Subm ...
- gym 100589A queries on the Tree 树状数组 + 分块
题目传送门 题目大意: 给定一颗根节点为1的树,有两种操作,第一种操作是将与根节点距离为L的节点权值全部加上val,第二个操作是查询以x为根节点的子树的权重. 思路: 思考后发现,以dfs序建立树状数 ...
- CodeForces 371D Vessels(树状数组)
树状数组,一个想法是当往p注水时,认为是其容量变小了,更新时二分枚举,注意一些优化. #include<cstdio> #include<iostream> #include& ...
- Mishka and Interesting sum Codeforces Round #365 (树状数组)
树状数组,与Turing Tree类似. xr[i]表示从1到i的抑或,树状数组维护从1到i每个数只考虑一次的异或,结果为sum(r) ^ sum(l) ^ xr[r] ^ xr[l] 其中xr[r] ...
- Codeforces 1096F(dp + 树状数组)
题目链接 题意: 对于长度为$n$的排列,在已知一些位的前提下求逆序对的期望 思路: 将答案分为$3$部分 $1.$$-1$与$-1$之间对答案的贡献.由于逆序对考虑的是数字之间的大小关系,故假设$- ...
- DNA Evolution CodeForces - 828E(树状数组)
题中有两种操作,第一种把某个位置的字母修改,第二种操作查询与[L, R]内与给出字符串循环起来以后对应位置的字母相同的个数.给出的字符串最大长度是10. 用一个四维树状数组表示 cnt[ATCG的编号 ...
随机推荐
- Mysql数据表字段扩充的小技巧
在开发中,往往需求变更比开发速度要快,就会存在一些问题,比如突然要增加一个字段,我们需要 alter table 表名 add [column] 字段名 数据类型 [列属性] [位置]; 然后修改实体 ...
- Golang 函数耗时统计
当时候需要去计算一段代码或一个程序所消耗时间的时候,就需要进行统计时间,用程序去计算某一段代码的执行所需要的时间远比用眼睛直接去看程序运行时间高很多. go语言中的time包中提供了函数来提供计算消耗 ...
- 谷歌guava缓存
简易缓存,可以设置时间的缓存 private static Cache<String,String> tokenCache = CacheBuilder.newBuilder().expi ...
- Flutter移动电商实战 --(13)ADBanner组件的编写
1.AdBanner组件的编写 我们还是把这部分单独出来,需要说明的是,这个Class你也是可以完全独立成一个dart文件的.代码如下: 广告图片 class AdBanner extends Sta ...
- 数据结构之栈(stack)
1,栈的定义 栈:先进后出的数据结构,如下图所示,先进去的数据在底部,最后取出,后进去的数据在顶部,最先被取出. 栈常用操作: s=Stack() 创建栈 s.push(item) 将数据item放在 ...
- Python - selectors 模块
selectors 模块 它的功能与 linux 的 epoll,还是 select 模块, poll 等类似: 实现高效的 I/O multiplexing , 常用于非阻塞的 socket ...
- Google Protocol Buffer 用法 C#
在网上查了一下,虽然有很多文章介绍Protocol Buffer,但是实际使用起来,还是会遇到很多问题,所以我想应该有一个指南一样的东西,让新手很快就能使用它. Protocol Buffer简写为P ...
- selenium 2019 笔记
1.get打开本地目录的方法
- [Kaggle] How to kaggle?
成立于2010年的Kaggle是一个进行数据发掘和预测竞赛的在线平台.与Kaggle合作之后,一家公司可以提供一些数据,进而提出一个问题,Kaggle网站上的计算机科学家和数学家,也就是现在所说的数据 ...
- 一台物理机器一个IP配置多个域名多套程序的方法
1.安装nginx cd /usr/local/ wget http://nginx.org/download/nginx-1.2.8.tar.gz tar -zxvf nginx-1.2.8.tar ...