1640
题意:
一张无向图
在最小化最大边后求最大边权和
Slove:
sort
最小生成树
倒叙最大生成树

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string> using namespace std; #define LL long long #define gc getchar()
inline int read() {int x = , f = ; char c = gc;
while(c < '' || c > '') {if(c == '-') f = -; c = gc;}
while(c >= '' && c <= '') x = x * + c - '', c = gc; return x * f;}
inline LL read_LL() {LL x = ; char c = gc; while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc; return x;}
#undef gc const int N = 1e5 + ; int fa[N];
int A[N << ], U[N << ], V[N << ], W[N << ];
int n, m; bool Cmp(int a, int b) {return W[a] < W[b];} int Get(int x) {return fa[x] == x ? x : fa[x] = Get(fa[x]);} void Minst(int &R) {
for(int i = ; i <= n; i ++) fa[i] = i;
int js = ;
for(int i = ; i <= m; i ++) {
int fu = Get(U[A[i]]), fv = Get(V[A[i]]);
if(fu != fv) {
fa[fu] = fv;
js ++;
}
if(js == n - ) {
R = i;
while(W[A[R + ]] == W[A[i]]) R ++;
return ;
}
}
} inline long long Maxst(int R) {
for(int i = ; i <= n; i ++) fa[i] = i;
int js = ;
long long ret = ;
for(int i = R; i >= ; i --) {
int fu = Get(U[A[i]]), fv = Get(V[A[i]]);
if(fu != fv) {
fa[fu] = fv;
ret += W[A[i]];
js ++;
}
if(js == n - ) return ret;
}
} int main() {
n = read(), m = read();
for(int i = ; i <= m; i ++) A[i] = i, U[i] = read(), V[i] = read(), W[i] = read();
sort(A + , A + m + , Cmp);
int R;
Minst(R);
cout << Maxst(R);
return ;
}

1649
由于 1 - n 之间一定存在一种直接相连的道路
判断哪种直接相连
跑另外一种的最短路

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string> using namespace std; #define LL long long #define gc getchar()
inline int read() {int x = ; char c = gc; while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc; return x;}
inline LL read_LL() {LL x = ; char c = gc; while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc; return x;}
#undef gc const int N = , oo = ; int Map[N][N], Bmap[N][N];
int n, m; int main() {
n = read(), m = read();
for(int i = ; i <= n; i ++) for(int j = ; j <= n; j ++) Map[i][j] = oo;
for(int i = ; i <= n; i ++) Map[i][i] = ;
for(int i = ; i <= n; i ++) for(int j = ; j <= n; j ++) Bmap[i][j] = oo;
for(int i = ; i <= n; i ++) Bmap[i][i] = ;
for(int i = ; i <= m; i ++) {
int u = read(), v = read();
Map[u][v] = Map[v][u] = ;
}
if(Map[][n] == ) {
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++) {
if(i == j) continue;
if(Map[i][j] == oo) Bmap[i][j] = ;
}
for(int k = ; k <= n; k ++)
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
Bmap[i][j] = min(Bmap[i][j], Bmap[i][k] + Bmap[k][j]);
if(Bmap[][n] == oo) cout << -;
else cout << Bmap[][n];
} else {
for(int k = ; k <= n; k ++)
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
Map[i][j] = min(Map[i][j], Map[i][k] + Map[k][j]);
if(Map[][n] == oo) cout << -;
else cout << Map[][n];
}
return ;
}

1535
图是树的充要条件
$m = n - 1$ && 图联通
由于题目无自环
所以不存在二元环
并且若 $m >= n - 1$
则图联通
此时若 $m = n$
那么就会存在且只存在一个三元环(或更大)
因此只需判断 $n = m$ 即可

if(n == m) cout << "FHTAGN!";
else cout << "NO";

51nod 3 * problem的更多相关文章

  1. 51nod 算法马拉松 34 Problem D 区间求和2 (FFT加速卷积)

    题目链接  51nod 算法马拉松 34  Problem D 在这个题中$2$这个质数比较特殊,所以我们先特判$2$的情况,然后仅考虑大于等于$3$的奇数即可. 首先考虑任意一个点对$(i, j)$ ...

  2. 51nod 1622 集合对[算法马拉松19 C]

    题目链接:https://www.51nod.com/contest/problem.html#!problemId=1622 第一次参加算法马拉松,我就是去看大神们疯狂秒题,然后感受绝望的orz.. ...

  3. 51nod算法马拉松 contest7

    A题 链接:http://www.51nod.com/contest/problem.html#!problemId=1417 推荐链接:http://blog.csdn.net/a837199685 ...

  4. pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量

    链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...

  5. 51nod 1103 N的倍数(抽屉原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...

  6. 51nod 1486 大大走格子(容斥原理)

    1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   有一个h行w列的棋盘,里面有一些格子是不能走的,现在要 ...

  7. 51nod 1204 Parity(并查集应用)

    1204 Parity 题目来源: Ural 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   你的朋友写下一串包含1和0的串让你猜,你可以从中选择一个连续的子串 ...

  8. 51nod 1364 最大字典序排列(线段树)

    1364 最大字典序排列基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字 ...

  9. 51nod 1682 中位数计数

    1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均 ...

随机推荐

  1. BC26模组UDP调试

    BC26模组调试 数据上报AT流程 [15:33:46.819]收←◆ F1: 0000 0000 V0: 0000 0000 [0001] 00: 0006 000C 01: 0000 0000 U ...

  2. Istio旨在成为容器化微服务的网格管道

    在精彩的软件容器世界中,当新项目涌现并解决你认为早已解决的问题时,这感觉就像地面在你的脚下不断地移动.在许多情况下,这些问题很久以前被解决,但现在的云原生架构正在推动着更大规模的应用程序部署,这就需要 ...

  3. shiro与spring集成

    简介 Apache Shiro 是 Java 的一个安全(权限)框架.主要提供了认证.授权.加密和会话管理等功能. Authentication:身份认证/登录,验证用户是不是拥有相应的身份:Auth ...

  4. SQL 多并发 多人取号,防止重复取号SQL 办法

    BEGIN TRAN         SELECT  *  from 表明 WITH(HOLDLOCK)        UPDATE 表名 SET 值=1 WHERE 字段=@carrierNo;   ...

  5. 什么叫工业4.0,这篇接地气的文章终于讲懂了(ZT)

    原地址:https://www.cnblogs.com/namei/p/6110382.html 笔者早年从事过工业自动化行业,后来去了几个城市,讲过<工业互联网与工业文明史>这门课,以至 ...

  6. nginx buffer

    1.错误日志:warn:an upstream response is buffered to a temporary file 解决办法:增加fastcgi_buffers 8 4K;     fa ...

  7. vue单页面应用加入百度统计

    版权声明:本文为CSDN博主「钟文辉」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/qq_39753974/a ...

  8. 【转载】Request对象的作用以及常见属性

    Request对象是Asp.Net应用程序中非常重要的一个内置对象,其作用主要用于服务器端获取客户端提交过来的相应信息,比较常用的有使用Requset对象获取用户提交的html表单信息,Request ...

  9. 面试常考HTTP协议知识点

    协议简介 1. 应用层协议, 一般以TCP为基础,数据收发通过TCP实现: 2. 一次性连接.服务器与客户端的每次连接只处理一个请求,下次请求重新建立连接: 3. 无状态协议.服务器不保留与客户交易时 ...

  10. 微信小程序开发demo

    自己写的小程序,欢迎下载 https://gitee.com/lijunchengit/chengZiShengHuoBang