链接:

https://www.acwing.com/problem/content/205/

题意:

求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。

思路:

首先:扩展欧几里得推导.

有ax+by = gcd(a, b) = gcd(b, a%b),

ax+by = bx+(a%b)y

ax+by = bx+(a-(a/b)b)y

ax+by = bx + ay-(a/b)
by

ax+by = ay + b(x-a/by)

有x' = y, y' = x-a/b
y

递归求解

对于ax = 1 (mod b).有b | ax+1. 令 ax+1 = -yb.

有ax+by = 1.用扩展欧几里得可以求出一个解.

代码:

#include <bits/stdc++.h>
using namespace std; int ExGcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
int d = ExGcd(b, a%b, x, y);
int tmp = y;
y = x-(a/b)*y;
x = tmp;
return d;
} int main()
{
int a, b, x, y;
scanf("%d%d", &a, &b);
int gcd = ExGcd(a, b, x, y);
printf("%d\n", ((x%b)+b)%b); return 0;
}

Acwing-203-同余方程(扩展欧几里得)的更多相关文章

  1. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  2. luogu P1082 同余方程 |扩展欧几里得

    题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...

  3. luogu1082 [NOIp2012]同余方程 (扩展欧几里得)

    由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...

  4. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  5. 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程

    什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...

  6. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  7. 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)

    题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...

  8. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  9. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

随机推荐

  1. luogu P4513 小白逛公园 (区间合并)

    链接:https://www.luogu.org/problemnew/show/P4513 思路: 很基础的区间合并,开四个数组: num: 区间数字的和 lsum:从左端点起最大连续字段和 rsu ...

  2. 16.Azkaban的安装

    工作流调度器azkaban 2.1 概述 2.1.1为什么需要工作流调度系统 l  一个完整的数据分析系统通常都是由大量任务单元组成: shell脚本程序,java程序,mapreduce程序.hiv ...

  3. Design Log Storage System

    You are given several logs that each log contains a unique id and timestamp. Timestamp is a string t ...

  4. mybatis 基础(一) xml配置

    如果文章有误,请各位楼下评论,感谢各位积极修正! 一起学习,成为大佬! mybatis: 1.轻量级 2.高级映射(实体类与数据库表字段的映射) 这样就可以后续开发中去操作实体类而不需要去关注数据库, ...

  5. Spring系列七:Spring 自动装配

    相思相见知何日?此时此夜难为情. 概述 在Spring框架中,在配置文件中声明bean的依赖关系是一个很好的做法,因为Spring容器能够自动装配协作bean之间的关系.这称为spring自动装配. ...

  6. docker入门到放弃

    1.容器简介 Docker是一个开源的应用容器引擎,使用Go语言开发,基于Linux内核的cgroup,namespace,Union FS等技术,对应用进程进行封装隔离,并且独立于宿主机与其他进程, ...

  7. Ruby Rails学习中:调试信息和 Rails 的三种环境,Users 资源,调试器,Gravatar 头像和侧边栏

    注册 一.调试信息和 Rails 环境 现在咱们要实现的用户资料页面是我们这个应用中第一个真正意义上的动态页面.虽然视图的代码不会动态改变, 不过每个用户资料页面显示的内容却是从数据库中读取的.添加动 ...

  8. vbs 简单文件操作

    Dim fso, MyFile, fldSet fso = CreateObject("Scripting.FileSystemObject")Set fld = fso.crea ...

  9. [转载]python with语句的用法

    https://www.cnblogs.com/DswCnblog/p/6126588.html 看这篇文章的时候看到了python的类名()用法,很好奇,上网查了下,原来这就相当于对类进行实例化了. ...

  10. 1 asp.net 中如何把用户控件应用于母版页

    1 创建用户控件 2 在母版页中注册用户控件 3 使用 <%@ Master Language="C#" AutoEventWireup="true" C ...