对反串建SAM得到后缀树,两后缀的lcp就是其在后缀树上lca的len值,于是每次询问对后缀树建出虚树并统计答案即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define P 23333333333333333ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,t,a[N*3],son[N][26],fail[N],deep[N],len[N],id[N],p[N],dfn[N],cnt=1,last=1;
struct data{int to,nxt;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
char s[N];
void ins(int c)
{
int x=++cnt,p=last;last=x;len[x]=len[p]+1;id[len[x]]=x;
while (!son[p][c]) son[p][c]=x,p=fail[p];
if (!p) fail[x]=1;
else
{
int q=son[p][c];
if (len[p]+1==len[q]) fail[x]=q;
else
{
int y=++cnt;
len[y]=len[p]+1;
memcpy(son[y],son[q],sizeof(son[q]));
fail[y]=fail[q],fail[q]=fail[x]=y;
while (son[p][c]==q) son[p][c]=y,p=fail[p];
}
}
}
namespace euler_tour
{
int id[N<<1],LG2[N<<1],f[N<<1][22],cnt;
void dfs(int k)
{
dfn[k]=++cnt;id[cnt]=k;
for (int i=p[k];i;i=edge[i].nxt)
{
deep[edge[i].to]=deep[k]+1;
dfs(edge[i].to);
id[++cnt]=k;
}
}
void build()
{
dfs(1);
for (int i=1;i<=cnt;i++) f[i][0]=id[i];
for (int j=1;j<=21;j++)
for (int i=1;i<=cnt;i++)
if (deep[f[i][j-1]]<deep[f[min(cnt,i+(1<<j-1))][j-1]]) f[i][j]=f[i][j-1];
else f[i][j]=f[min(cnt,i+(1<<j-1))][j-1];
for (int i=2;i<=cnt;i++)
{
LG2[i]=LG2[i-1];
if ((2<<LG2[i])<=i) LG2[i]++;
}
}
int lca(int x,int y)
{
if (!x||!y) return 0;
x=dfn[x],y=dfn[y];
if (x>y) swap(x,y);
if (deep[f[x][LG2[y-x+1]]]<deep[f[y-(1<<LG2[y-x+1])+1][LG2[y-x+1]]]) return f[x][LG2[y-x+1]];
else return f[y-(1<<LG2[y-x+1])+1][LG2[y-x+1]];
}
}
using euler_tour::lca;
namespace virtual_tree
{
int p[N],size[N],stk[N],top,t;
bool flag[N];
ll ans;
struct data{int to,nxt;}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void newnode(int k,int x){if (!flag[k]) p[k]=0,flag[k]=1,size[k]=x;}
void build(int *a,int n)
{
stk[top=1]=1;newnode(1,0);t=0;
for (int i=1;i<=n;i++)
{
int l=lca(a[i],stk[top]);newnode(l,0);
while (top>1&&deep[stk[top-1]]>=deep[l]) addedge(stk[top-1],stk[top]),top--;
if (l!=stk[top]) addedge(l,stk[top]),stk[top]=l;
stk[++top]=a[i];newnode(a[i],1);
}
while (top) addedge(stk[top-1],stk[top]),top--;
}
void work(int k)
{
flag[k]=0;
for (int i=p[k];i;i=edge[i].nxt)
{
work(edge[i].to);
ans=(ans+1ll*size[k]*size[edge[i].to]*len[k])%P;
size[k]+=size[edge[i].to];
}
}
ll calc()
{
ans=0;
work(1);
return ans;
}
}
bool cmp(const int&x,const int&y)
{
return dfn[x]<dfn[y];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
scanf("%s",s+1);
for (int i=1;i<=n;i++) ins(s[n-i+1]-'a');
for (int i=2;i<=cnt;i++) addedge(fail[i],i);
euler_tour::build();
while (m--)
{
t=read();for (int i=1;i<=t;i++) a[i]=id[n-read()+1];
sort(a+1,a+t+1,cmp);t=unique(a+1,a+t+1)-a-1;
virtual_tree::build(a,t);
printf(LL,virtual_tree::calc());
}
return 0;
}

  

BZOJ3879 SvT(后缀树+虚树)的更多相关文章

  1. bzoj3879 SvT(后缀自动机+虚树)

    bzoj3879 SvT(后缀自动机+虚树) bzoj 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置 ...

  2. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

  3. [SDOI2018]战略游戏(圆方树+虚树)

    喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...

  4. CF1073G Yet Another LCP Problem 后缀自动机 + 虚树 + 树形DP

    题目描述 记 $lcp(i,j)$ 表示 $i$ 表示 $i$ 这个后缀和 $j$ 这个后缀的最长公共后缀长度给定一个字符串,每次询问的时候给出两个正整数集合 $A$ 和 $B$,求$\sum_{i\ ...

  5. hihoCoder #1954 : 压缩树(虚树)

    题意 有一棵 \(n\) 个节点且以 \(1\) 为根的树,把它复制成 \(m\) 个版本,有 \(q\) 次操作,每次对 \([l, r]\) 这些版本的 \(v\) 节点到根的路径收缩起来. 收缩 ...

  6. 51Nod1868 彩色树 虚树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1868.html 题目传送门 - 51Nod1868 题意 给定一颗 $n$个点的树,每个点一个 $[ ...

  7. Codechef Sad Pairs——圆方树+虚树+树上差分

    SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...

  8. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  9. Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树

    https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...

随机推荐

  1. fdisk交互

    fdisk交互 命令 说明 指令 a 设置可引导标记 toggle a bootable flag b 编辑bsd磁盘标签 edit bsd disklabel c 设置DOS操作系统兼容标记 tog ...

  2. GDPR全文翻译(一)

    General Data Protection Regulation <一般数据保护法案>全文翻译(一) 编者按 2016年4月14日,欧洲议会投票通过了商讨四年的<一般数据保护法案 ...

  3. echarts3.0之关系图详解

    近期需要使用echarts关系图,当我打开echarts3.0官方demo后发现,对于新手而言,直接看懂有点儿难度,固写这样一篇文章让自己加深记忆,也便新手迅速上手.话不多说,开整生气! echart ...

  4. redis不支持多个数据库实例但是支持多个字典

    Redis多个数据库 注意:Redis支持多个数据库,并且每个数据库的数据是隔离的不能共享,并且基于单机才有,如果是集群就没有数据库的概念. Redis是一个字典结构的存储服务器,而实际上一个Redi ...

  5. scope.row中属性值展示

    <el-table-column align="> <template slot-scope="scope"> {{ scope.$index } ...

  6. Chrome 浏览器自动填表呈现淡黄色解决

      Chrome 浏览器,当记住用户名和密码后,下次填写表单时,被记住的部分会被填充为淡黄色,有些时候不好看. 解决方式如下: input:-webkit-autofill {      -webki ...

  7. 阶段5 3.微服务项目【学成在线】_day16 Spring Security Oauth2_09-SpringSecurityOauth2研究-Oauth2密码模式授权

    密码模式(Resource Owner Password Credentials)与授权码模式的区别是申请令牌不再使用授权码,而是直接 通过用户名和密码即可申请令牌. 测试如下: Post请求:htt ...

  8. linux 运维指令

    [root@yan- ~] # uname -a # 查看内核/操作系统/CPU信息的linux系统信息命令 [root@yan- ~] # head -n /etc/issue # 查看操作系统版本 ...

  9. 【Leetcode_easy】703. Kth Largest Element in a Stream

    problem 703. Kth Largest Element in a Stream 题意: solution1: priority_queue这个类型没有看明白... class KthLarg ...

  10. 【Leetcode_easy】690. Employee Importance

    problem 690. Employee Importance 题意:所有下属和自己的重要度之和,所有下属包括下属的下属即直接下属和间接下属. solution:DFS; /* // Employe ...