#3020. 「CQOI2017」小 Q 的表格

这个的话求出来\(g = gcd(a,b)\)

会修改所有gcd为g的位置

我们要求\((g,g)\)这个位置的数一定是\(g^{2}\)的倍数

之后的\(gcd(a,b) == g\)的位置也会满足

$\frac{f(g,g)}{g^{2}} = \frac{f(a,b)}{ab} $

注意\(\frac{f(g,g)}{g^{2}}\),\(\frac{f(a,b)}{ab}\)都不一定是整数,但是\(f(g,g)\)和\(f(a,b)\)是

这样的话我们求出\(f(g,g)\)的值,很容易得到

\(ans = \sum_{d = 1}^{k} f(d,d) \sum_{i = 1}^{\lfloor \frac{k}{d} \rfloor} \sum_{j = 1}^{\lfloor \frac{k}{d} \rfloor} [gcd(i,j) == 1] i \cdot j\)

这个时候不要用\(\mu\) !不要用\(\mu\)!不要用\(\mu\)!

我们这么考虑,就是枚举一个\(i\),然后乘上\(i\)以内和\(i\)互质的数的和,由于顺序可以交换,所以要乘上1

\(i\)以内和\(i\)互质的数的公式是\(\frac{i\times \varphi(i)}{2}\)

\(1\)的话除外,不过由于外面乘了一个2,所以这个式子在这里对1成立

所以

\(ans = \sum_{d = 1}^{k} f(d,d) \sum_{i = 1}^{\lfloor \frac{k}{d} \rfloor} i^{2}\varphi(i)\)

后面的可以预处理,前面的话要更新前缀和,用分块实现\(O(\sqrt{N})\)维护和\(O(1)\)查询即可

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 4000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int M,N;
int f[MAXN],prime[MAXN],tot,phi[MAXN];
int h[MAXN],bl[2005],br[2005],id[MAXN],cnt,lz[2005];
int sum[MAXN];
bool nonprime[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(M);read(N);
phi[1] = 1;
h[1] = 1;
for(int i = 2 ; i <= N ; ++i) {
if(!nonprime[i]) {
prime[++tot] = i;
phi[i] = i - 1;
}
for(int j = 1 ; j <= tot ; ++j) {
if(prime[j] > N / i) break;
nonprime[i * prime[j]] = 1;
if(i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else {
phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
h[i] = mul(phi[i],mul(i,i));
update(h[i],h[i - 1]);
}
for(int i = 1 ; i <= N ; ++i) {
sum[i] = mul(i,i);
f[i] = mul(i,i);
update(sum[i],sum[i - 1]);
}
int S = sqrt(N);
for(int i = 1 ; i <= N ; ++i) {
int r = min(N,i + S - 1);
++cnt;
bl[cnt] = i;br[cnt] = r;i = r;
for(int j = bl[cnt] ; j <= br[cnt] ; ++j) id[j] = cnt;
}
int a,b,k;
int64 x;
for(int i = 1 ; i <= M ; ++i) {
read(a);read(b);read(x);read(k);
int g = gcd(a,b);
int d = (x / (1LL * a / g * b / g)) % MOD;
int c = inc(d,MOD - f[g]);
f[g] = d;
for(int j = g ; j <= br[id[g]] ; ++j) {
update(sum[j],c); }
for(int j = id[g] + 1 ; j <= cnt ; ++j) update(lz[j],c);
int res = 0;
for(int j = 1 ; j <= k ; ++j) {
int r = k / (k / j);
int s = inc(sum[r],lz[id[r]]);
s = inc(s,MOD - inc(sum[j - 1],lz[id[j - 1]]));
update(res,mul(s,h[k / j]));
j = r;
}
out(res);enter;
}
return 0;
}

【LOJ】#3020. 「CQOI2017」小 Q 的表格的更多相关文章

  1. Luogu P3700「CQOI2017」小Q的表格

    为什么我连分块都想不到啊... 题意 定义一个矩阵$f$满足 $ f(a,b)=f(b,a)$ $ b·f(a,a+b)=(a+b)·f(a,b)$ 初始$ f(a,b)=ab$ 有$ m$次修改,每 ...

  2. 「NOI2013」小 Q 的修炼 解题报告

    「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...

  3. loj#2009.「SCOI2015」小凸玩密室

    题目链接 loj#2009. 「SCOI2015」小凸玩密室 题解 树高不会很高<=20 点亮灯泡x,点亮x的一个子树,再点亮x另外的子树, 然后回到x的父节点,点亮父节点之后再点亮父节点的其他 ...

  4. 【CQOI2017】小Q的表格

    [CQOI2017]小Q的表格 稍加推导就会发现\(f(a,b)=a\cdot b\cdot h(gcd(a,b))\). 初始时\(h(n)=1\). 询问前\(k\)行\(k\)列时我们就反演: ...

  5. loj #2008. 「SCOI2015」小凸想跑步

    #2008. 「SCOI2015」小凸想跑步   题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n nn 边形,N NN 个顶点按照逆时针从 0∼n−1 0 ...

  6. loj #2006. 「SCOI2015」小凸玩矩阵

    #2006. 「SCOI2015」小凸玩矩阵   题目描述 小凸和小方是好朋友,小方给小凸一个 N×M N \times MN×M(N≤M N \leq MN≤M)的矩阵 A AA,要求小凸从其中选出 ...

  7. @loj - 3022@ 「CQOI2017」老 C 的方块

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 老 C 是个程序员. 作为一个懒惰的程序员,老 C 经常在电脑上 ...

  8. *LOJ#2134. 「NOI2015」小园丁与老司机

    $n \leq 5e4$个平面上的点,从原点出发,能从当前点向左.右.上.左上或右上到达该方向最近的给定点.问三个问:一.最多经过多少点:二.前一问的方案:三.其所有方案种非左右走的边至少要开几辆挖掘 ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. epoll事件模型

    事件模型 EPOLL事件有两种模型: Edge Triggered (ET) 边缘触发只有数据到来才触发,不管缓存区中是否还有数据. Level Triggered (LT) 水平触发只要有数据都会触 ...

  2. SpringMVC 捕获参数绑定失败时的异常

    SpringMVC配置数据验证(JSR-303)中提到了用String类型的域来绑定Ajax中的非法类型的参数. 这样做的目的是一旦发生一种情况,后端可以返回一个自定类的返回值,而不是返回Spring ...

  3. AxB Proplem(大数乘法)

    描述 Redraiment碰到了一个难题,需要请你来帮忙:给你两个整数,请你计算A × B. 输入 数据的第一行是整数T(1 ≤ T ≤ 20),代表测试数据的组数. 接着有T组数据,每组数据只有一行 ...

  4. html中的lang标记有什么用

    html中的lang标记有什么用 一.总结 一句话总结: 为文档或元素设定主语言(即lang) 比如google浏览器有个自动翻译的功能,而自动翻译要看这个文档的语言 1.其它标签中设置lang属性? ...

  5. 设计自用的golang日志模块

    设计自用的golang日志模块 golang的原生日志模块不能满足需求,而开源的第三方包,也不完全够用.用户较多的logrus,却没有rotate功能,这已经是众所周知的.对于运维来说,当然是希望日志 ...

  6. 【Python】Python format 格式化函数(转帖)

    https://www.runoob.com/python/att-string-format.html Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符 ...

  7. 基础数据结构 对应 基础api

    <深入理解Redis> mastering redis

  8. vue + elementui form resetFields方法 无法重置表单

    this.$refs['form'].resetFields(); 方法无法重置.1 el-form 组件 没有添加 ref 属性 <el-form ref="form" : ...

  9. 阶段5 3.微服务项目【学成在线】_day09 课程预览 Eureka Feign_17-课程预览功能开发-前后端测试

    启动前端代码 前端课程找到课程的发布页面 这样就打开了预览页面 结束

  10. Linux -- Reactor

    结构 1. handles 资源的标志.这些资源通常包含网络连接,文件,定时器,同步对象等.handles 被用在注册服务器来标记socket,以便同步事件复用(Synchronous Event D ...