3594: [Scoi2014]方伯伯的玉米田

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 1971  Solved: 961
[Submit][Status][Discuss]

Description

方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。

Input

第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。

Output

输出1个整数,最多剩下的玉米数。

Sample Input

3 1
2 1 3

Sample Output

3

HINT

1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000、


首先来简化一下题意,就是在进行k次拔高操作后,求最长单调不下降序列。

首先我们来证明一个结论:进行拔高操作的最优决策肯定是后边的拔高次数大于等于前面的拔高次数,并且拔高次数单调不下降。

有了这个性质后,我们就知道了他每次进行的拔高操作一定是对于一个后缀进行操作。

所以可以想出一个复杂度为$O(n^2k^2)$的暴力,即类似与$O(n^2)$求解LIS的过程只不过多了一个限制条件

设$f[i][j]$为到第i个,进行j此操作的最上不下降子序列长度

$f[i][j]=\max{f[k][l]+1},(a[i]+j>=a[k]+l,i>k,j>l)$

由于这题数据都比较强,所以上面这种算法能拿到0分的好成绩别问我是怎么知道的

显然会T到飞起

现在我们考虑优化,我们可以看到这个转移的限制条件就是一个二位偏序,所以用二维树状数组维护区间最大值即可

注意的几点:二维树状数组一位存拔高后的高度,一位存拔高次数,注意千万不能存下标,否则会MLE。

      为了避免树状数组下标为0,所以将拔高次数都加1。

      注意状态数组的定义问题这决定这你是在每次更新f数组时都更新ans,还是在最后一遍更新。

      第二维倒序枚举(不知道为什么qwq,有会的大佬指出)。

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<algorithm>
  5. #include<cmath>
  6. #include<vector>
  7. #define lowbit(x) x&(-x)
  8. const int N=2e4+;
  9. using namespace std;
  10. int c[][];int n,k,Max=;
  11. int f[N][],a[N];
  12. void add(int x,int y,int add){//i,j
  13. for(int i=x;i<=k+;i+=lowbit(i)) for(int j=y;j<=Max+k;j+=lowbit(j)) c[i][j]=max(add,c[i][j]);//buhui
  14. }
  15. int query(int x,int y){
  16. int res=;
  17. for(int i=x;i;i-=lowbit(i)) for(int j=y;j;j-=lowbit(j)) res=max(res,c[i][j]);
  18. return res;
  19. }
  20. main(){
  21. scanf("%d%d",&n,&k);
  22. for(int i=;i<=n;i++) scanf("%d",&a[i]),Max=max(a[i],Max);
  23. int ans=;
  24. //for(int i=1;i<=k;i++) {f[i][0]=1;add(1,a[i],1);}//buzhidao
  25. for(int i=;i<=n;i++){
  26. for(int j=k;j>=;j--){//buzhidao
  27. //mingbai
  28. f[i][j]=query(j+,a[i]+j)+;
  29. ans=max(f[i][j],ans);
  30. add(j+,a[i]+j,f[i][j]);//mingbai
  31. }
  32. }
  33. /*int ans=-1;//mingbai
  34. for(int i=0;i<=k;i++) ans=max(ans,f[n][i]);*/
  35. printf("%d",ans);
  36. }

SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)的更多相关文章

  1. [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp

    我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...

  2. [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划

    考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...

  3. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

  4. BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)

    可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...

  5. bzoj 3594: [Scoi2014]方伯伯的玉米田【二维树状数组+dp】

    设f[i][j]为前i棵玉米被拔高了j(因为是单调不降所以前面越高越好,所以每次拔一个前缀),转移是f[i][j]=f[k][l]+1,l<=j,a[k]+l<=a[i]+j,然后用二维树 ...

  6. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  7. BZOJ 3594 [Scoi2014]方伯伯的玉米田(二维树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最 ...

  8. 「SCOI2014」方伯伯的玉米田 解题报告

    #2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...

  9. bzoj3594 方伯伯的玉米田 树状数组优化dp

    f[i][j]表示到第i位,使用了j次机会的最长不下降子序列长度 转移:f[i][j]=max(f[x][y])+1; x<i; y<=j; a[x]+y<=a[i]+j; 所以根据 ...

随机推荐

  1. Nginx安装启动过程报错libpcre.so.1 cannot open shared object file: No such file or directory

    具体报错信息如下: nginx: error while loading shared libraries: libpcre.so.1: cannot open shared object file: ...

  2. 怎样设置cookie的到期时间

    1. 使用Cookie的: Expires 属性. 它可以设置cookie的过期时间. 下面的代码表示id这条cookie的过期时间是2015年10月21日早上7点28分; Set-Cookie: i ...

  3. 解决go mod或go get时`x509: certificate signed by unknown authority`错误

    一般go get私有仓库时会出现如下错误: go: xxx@v0.0.0-20190918102752-bb51b27911ca: unrecognized import path "xxx ...

  4. hdu 3500 还是搜索

    这道题目由于每走一步的时候毛毛球是可以变换的 换言之 主体不唯一 所以这里搜索的设计有变化 再就是几个回溯的过程要注意.,.  小心使得万年船 #include <iostream> #i ...

  5. Visual Studio container tools require Docker to be running

    处理项目在生成时报错"Visual Studio container tools require Docker to be running" 最初win10上安装docker,项目 ...

  6. git diff 的简单使用(比较版本区别)

    假如我们修改viewMail.vue 文件(部分代码) 从 //根据ID获取详情 getById () { let that = this; this.viewMailModal = true; th ...

  7. php 如何将image图片转化为字符串(GD库操作及imagick两种实现方式)

    前两天研究php中的 imagick 扩展的时候,突发奇想实现的一个小功能感觉挺有意思,在这里记录一下: 将一张image图片转化为字符串的形式,先上一张效果图.(运行笔记中的代码需要先安装 php_ ...

  8. Java 程序员必备的一些流程图

    1.spring的生命周期 2.TCP三次握手,四次挥手 3.线程池执行流程图 4.JVM内存结构 5.Java内存模型 6.springMVC执行流程图 7.JDBC执行流程 8.spring cl ...

  9. cookie 和session的关联关系

    session 1.1 数据存储,存服务器端, 浏览器解决http无状态问题的一种解决方案 登录,同一客户端访问服务端的时候,服务端都知道是这一个客户端 cookie 2.1 数据存储 , 存客户端 ...

  10. linux之getopts

    在编写shell脚本中,经常要处理一些输入参数,在使用过程中发现getopts更加方便,能够很好的处理用户输入的参数和参数值. getopts用于处理用户输入参数,举例说明使用方法: while ge ...