MySQL的JOIN(二):JOIN原理

表连接算法

Nested Loop Join(NLJ)算法: 
首先介绍一种基础算法:NLJ,嵌套循环算法。循环外层是驱动表,循坏内层是被驱动表。驱动表会驱动被驱动表进行连接操作。首先驱动表找到第一条记录,然后从头扫描被驱动表,逐一查找与驱动表第一条记录匹配的记录然后连接起来形成结果表中的一条记。被驱动表查找完后,再从驱动表中取出第二个记录,然后从头扫描被驱动表,逐一查找与驱动表第二条记录匹配的记录,连接起来形成结果表中的一条记录。重复上述操作,直到驱动表的全部记录都处理完毕为止。这就是嵌套循环连接算法的基本思想,伪代码如下。

    foreach row1 from t1
foreach row2 from t2
if row2 match row1 //row2与row1匹配,满足连接条件
join row1 and row2 into result //连接row1和row2加入结果集

首先加载t1,然后从t1中取出第一条记录,之后加载t2表,与t2表中的记录逐个匹配,连接匹配的记录。

Block Nested Loop Join(BNLJ)算法: 
再介绍一种高级算法:BNLJ,块嵌套循环算法,可以看作对NLJ的优化。大致思想就是建立一个缓存区,一次从驱动表中取多条记录,然后扫描被驱动表,被驱动表的每一条记录都尝试与缓冲区中的多条记录匹配,如果匹配则连接并加入结果集。缓冲区越大,驱动表一次取出的记录就越多。这个算法的优化思路就是减少内循环的次数从而提高表连接效率。

影响性能的因素

1.内循环的次数:现在考虑这么一个场景,当t1有100条记录,t2有10000条记录。那么,t1驱动t2与t2驱动t1,他们之间在效率上孰优孰劣?如果是单纯的分析指令执行次数,他们都是100*10000,但是考虑到加载表的次数呢。首先分析t1驱动t2,t1表加载1次,t2表需要加载100次。然后分析t2驱动t1,t2表首先加载1次,但是t1表要加载10000次。所以,t1驱动t2的效率要优于t2驱动t1的效率。由此得出,小表驱动大表能够减少内循环的次数从而提高连接效率。 
另外,如果使用Block Nested Loop Join算法的话,通过扩大一次缓存区的大小也能减小内循环的次数。由此又可得,设置合理的缓冲区大小能够提高连接效率

2.快速匹配:扫描被驱动表寻找合适的记录可以看做一个查询操作,如何提高查询的效率呢?建索引啊!由此还可得出,在被驱动表建立索引能够提高连接效率

3.排序:假设t1表驱动t2表进行连接操作,连接条件是t1.id=t2.id,而且要求查询结果对id排序。现在有两种选择,方式一[...ORDER BY t1.id],方式二[...ORDER BY t2.id]。如果我们使用方式一的话,可以先对t1进行排序然后执行表连接算法,如果我们使用方式二的话,只能在执行表连接算法后,对结果集进行排序(Using temporary),效率自然低下。由此最后可得出,优先选择驱动表的属性进行排序能够提高连接效率。

SQL的循环嵌套算法:NLP算法和BNLP算法的更多相关文章

  1. 网络流之最大流算法(EK算法和Dinc算法)

    最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...

  2. 单源最短路径算法——Bellman-ford算法和Dijkstra算法

     BellMan-ford算法描述 1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0; 2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V ...

  3. TCP_NODELAY和TCP_CORK nagle算法和cork算法

    TCP_NODELAY 默认情况下,发送数据採用Nagle 算法.这样尽管提高了网络吞吐量,可是实时性却减少了,在一些交互性非常强的应用程序来说是不同意的.使用TCP_NODELAY选项能够禁止Nag ...

  4. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  5. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  6. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  7. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  8. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  9. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

随机推荐

  1. noi.ac #546 分组

    题目链接:戳我 题目描述 现在有n个字符串,你需要从中选出一些字符串,使得选出的字符串能被分组,满足每组大小为2,且可以从每组选出该组的两个字符串的一个非空公共后缀,使得每组选出的串互不相同. 输入格 ...

  2. Android有进度条异步任务下载图片

    首先在AndroidMainifest中添加上网权限 ? 1 <uses-permission android:name="android.permission.INTERNET&qu ...

  3. AcWing:164. 可达性统计(拓扑排序 + 状态压缩算法)

    给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量. 输入格式 第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边. 输出格式 输出共N行,表示每个点能 ...

  4. Linux用户以及组的添加与删除

    查看centos中的用户和用户组 1.用户列表文件:/etc/passwd/ 2.用户组列表文件:/etc/group 3.查看系统中有哪些用户: cut -d : -f 1 /etc/passwd ...

  5. flask 第七篇 路由系统

    Flask中的路由系统其实我们并不陌生了,从一开始到现在都一直在应用 @app.route("/",methods=["GET","POST" ...

  6. selenium 入门(Java)

    官网:https://www.seleniumhq.org/ 下载地址:https://sites.google.com/a/chromium.org/chromedriver/downloads 华 ...

  7. Android jni/ndk编程三:native访问java

    一.访问静态字段 Java层的field和method,不管它是public,还是package.private和protected,从 JNI都可以访问到,Java面向语言的封装性不见了. 静态字段 ...

  8. 原来项目更换svn地址

    近期公司由于旧地址装修,临时更换办公地址:同时相应的网络地址也更换了.我们开发项目的svn地址根目录也得改变.所以怎么解决呢? 1.找到项目根文件夹: 右键:

  9. dpkg软件包管理

    要想得心应手管理Ubuntu软件包,就必须熟悉其中最重要的软件包管理程序dpkg工具是Ubuntu软件包管理工具的基础.使用dpkg工具可以实现软件包的安装.卸载.查询.编译.打包等功能. dpkg( ...

  10. 搭建与破解wiki (confluence)

    搭建环境: 操作系统:contos7 数据库:5.5.60-MariaDB java版本: jdk-11.0.2 confluence版本:confluence6.7.1 一. 准备工作 下载conf ...