幂法的原理可参考此篇论文:http://d.wanfangdata.com.cn/Periodical/hnnydxxb2001Z1023

本文求解的是 3 阶矩阵最大特征值及其特征向量

下面是其 C++ 实现代码:

#include <iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<iomanip>
using namespace std; double A[3][3];
double Y[3]={1,1,1};
double X[3]={0,0,0};
int row=0; int col=0;
double max1=0; void open_file()
{
FILE *fp;
fp = fopen("array.txt", "r"); //3*3矩阵由外部读入
if(fp==NULL)
cout<<"File opened failed!"<<endl; for(row=0;row<3;row++)
{
for(col= 0; col < 3; col ++)
fscanf(fp, "%lf,",&A[row][col]);
if(feof(fp)) break;
}
fclose(fp);
} void mult()
{
X[0]=0;X[1]=0;X[2]=0;
for(row=0;row<3;row++)
{
for(col=0;col<3;col++)
X[row] +=A[row][col]*Y[col];
}
} void to1()
{
long double tmp=fabs(X[0]);
for(int i=1;i<3;i++)
{
if(fabs(X[i])>tmp)
tmp=fabs(X[i]);
}
for(int i=0;i<3;i++)
{
Y[i]=X[i]/tmp;
}
max1=tmp;
} int main()
{
cout <<setiosflags(ios::fixed);
open_file();
double ago=max1+100.0;
double feature_vector[3];
int k=1;
while(fabs(max1-ago)>0.000001)
{
ago=max1;
for(int j=0;j<3;j++)
{
feature_vector[j]=Y[j];
}
mult();
to1();
cout<<"k= "<<k<<" ";
for(int i=0;i<3;i++)
cout<<X[i]<<" ";
cout<<endl;
k++;
}
cout<<endl<<"totally run "<<k-1<<" times"<<endl;
cout<<endl<<"the matrix eigenvalue is "<<max1<<endl;
cout<<endl<<"the feature vector is "<<"["<<feature_vector[0]<<" , "<<feature_vector[1]<<" , "<<feature_vector[2]<<"]"<<endl; }

  部分参数可修改用于扩展

[c++] 幂法求特征向量的更多相关文章

  1. [转]PageRank算法

    原文引自: 原文引自: http://blog.csdn.net/hguisu/article/details/7996185 感谢 1. PageRank算法概述 PageRank,即网页排名,又称 ...

  2. Spark2.0机器学习系列之11: 聚类(幂迭代聚类, power iteration clustering, PIC)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:             (1)K-means             (2)Latent Dirichlet all ...

  3. Machine Learning:PageRank算法

    1. PageRank算法概述 PageRank,即网页排名,又称网页级别.Google左側排名或佩奇排名.         在谷歌主导互联网搜索之前, 多数搜索引擎採用的排序方法, 是以被搜索词语在 ...

  4. 我对PageRank的理解及R语言实现

    PageRank,网页排名,又称网页级别.Google左侧排名或佩奇排名,是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry ...

  5. 【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现

    [引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决 ...

  6. KMP算法分析

    KMP是一种复杂度较低的字符串比较算法.基本思路是对欲匹配字符串进行预处理,分析当k位匹配时可以后移的位数,所得的数构成该字符串的特征向量. 求特征向量Next int* Next(string p) ...

  7. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  8. 特征值分解与奇异值分解(SVD)

    1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...

  9. 初识KMP

    KMP简介 KMP是一种由Knuth(D.E.Knuth).Morris(J.H.Morris)和Pratt(V.R.Pratt)设计的字符串匹配算法.对目标串T[0:n-1]中查找与之匹配的模式串P ...

随机推荐

  1. Navicat导出表结构

    SQL Server导出表结构 Oracle导出表结构

  2. 2019牛客暑期多校训练营(第一场)I dp+线段树

    题意 给出n个点,每个点有a,b两个属性,让你从左下角到右上角划一条线,线的左边每个点的贡献是\(a_i\),线的右边每个点的贡献是\(b_i\),使得两部分的总和最大. 分析 找一条折线将点分割开, ...

  3. JS 浏览器地址栏传递参数,参数加密/解密(编码/解码)

    我们有时候在JS里进行页面跳转,并且传递了参数(AppName),如下: window.location = "../../views/form/edit.html?AppName=新增&q ...

  4. python实例方法、静态方法和类方法

    Python中至少有三种比较常见的方法类型,即实例方法,类方法.静态方法.它们是如何定义的呢?如何调用的呢?它们又有何区别和作用呢?且看下文. 首先,这三种方法都定义在类中.下面我先简单说一下怎么定义 ...

  5. dom4j读写XML文档

    dom4j 最常用最简单的用法(转) 要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http:/ ...

  6. flask登录功能实现的思路

    flask登录实现过程思路:前端创建表单,post方法,userno,pwd参数 后端首先创建登录验证函数check(验证函数是指通过request.get来获取前端的userno,pwd.然后将两个 ...

  7. win10无法连接windows服务器,无法连接SENS服务

    本文链接:https://blog.csdn.net/weixin_38374974/article/details/80475566 膜拜大佬 首先,进入windows界面的时候,前期加载速度变得极 ...

  8. LeetCode 230. 二叉搜索树中第K小的元素(Kth Smallest Element in a BST)

    题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 示例 1: 输入: roo ...

  9. spring-jms,spring-boot-starter-activemq JmsTemplate 发送方式

    spring-jms,spring-boot-starter-activemq JmsTemplate 发送方式 背景: 原来我准备是setDefaultDestinationName 设置队列的名称 ...

  10. vscode 占内存的方法

    1.修复vs code 造成 rg.exe内存占用过大的问题 search.followSymlinks: false 2.修复vs code 造成 git.exe内存占用过大的问题 git.enab ...