51nod1079(中国剩余定理)
题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687
题意: 中文题诶~
思路: 本题就是个中国剩余定理模板题,不过模拟也可以过,而且时间复杂度嘛~
我们可以知道gcd得出两个数的最大公约在最坏的情况下(a, b是相邻的两个斐波拉契数)是O(logn)的, 同理可以知道exgcd也是O(lgn)时间复杂度,因此中国剩余定理时间复杂度是O(nlogn); 而模拟的话最坏的情况下需要O(n*x)的时间~本题两种算法都是15ms...
这里给出一个关于gcd时间复杂度分析的博客: http://blog.csdn.net/zeroonet/article/details/53375313
我们先说一下模拟.首先我们知道如果x%a=m的话, x=k*a+m.
对于 x%a1=m1, 很显然x(min)=m, 如果再加一组条件 x%a2=m2, 若当前x(min)不满足条件2的话, 我们找下一个(我们可以想象满足条件1的数据升序排列)满足条件1的数据,即a1+m,再判断其是否满足条件2, 很显然我们只要地推下去就能找到同时满足条件1, 2的最小数据; 如果再加一个条件 x%a3=m3呢? 前面我们已经招到了满足条件1, 2的最小数据
x(min), 若其不满足条件3话, 我们找下一个满足条件1, 2的数据, 即x(min)+lcm(a1, a2)(此题中ai与aj互质,所以直接相乘就好啦,并且由这里我们不难看出最坏情况下即每次加2时其时间复杂度为O(x)), 再判断其是否满足条件3, 最终我们可以招到同时满足三个条件的最小数;
那么,很明显对于要满足n个这样的条件的答案我们也可以用这个方法求到啦~
代码:
#include <bits/stdc++.h>
#define MAXN 20
#define ll long long
using namespace std; int main(void){
int n;
ll p[MAXN], m[MAXN], ans=, gg=;
scanf("%d", &n);
for(int i=; i<n; i++){
scanf("%lld%lld", &m[i], &p[i]);
}
ans=p[];
for(int i=; i<n-; i++){
gg*=m[i];
while(ans%m[i+]!=p[i+]){
ans+=gg;
}
}
printf("%lld\n", ans);
return ;
}
那么中国剩余定理的模板呢~

至于证明嘛, 暂时还没想到(望路过的大神教一下)~
代码:
#include <bits/stdc++.h>
#define MAXN 20
#define ll long long
using namespace std; ll p[MAXN], m[MAXN];
int n; void exgcd(ll a, ll b, ll& x, ll& y){ //exgcd求乘法取模运算的逆元
if(!b){
y=, x=;
return;
}else{
exgcd(b, a%b, x, y);
ll temp=x;
x=y;
y=temp-a/b*y;
}
} ll crt(void){
ll M=, ans=;
for(int i=; i<n; i++){
M*=m[i];
}
for(int i=; i<n; i++){
ll mi=M/m[i], x, y;
exgcd(mi, m[i], x, y);
ans=(ans+p[i]*x*mi)%M;
}
if(ans<){
ans+=M;
}
return ans;
} int main(void){
scanf("%d", &n);
for(int i=; i<n; i++){
scanf("%lld%lld", &m[i], &p[i]);
}
printf("%lld\n", crt());
return ;
}
51nod1079(中国剩余定理)的更多相关文章
- 51nod1079 中国剩余定理【数论】
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23. Input 第1行:1个数N表 ...
- 51nod1079 poj2891 中国剩余定理与其扩展
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1079 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K. ...
- ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
- 中国剩余定理(Chinese Remainder Theorem)
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times \cdots \tim ...
- HDU 5446 中国剩余定理+lucas
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- poj1006生理周期(中国剩余定理)
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...
- poj 1006:Biorhythms(水题,经典题,中国剩余定理)
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 110991 Accepted: 34541 Des ...
- UVA 11754 (暴力+中国剩余定理)
题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...
- poj1006-Biorhythms(中国剩余定理)
一,题意:右上角中文.二,思路: 1,由题意得出方程组 2,利用中国剩余定理求解 3,求出最小正整数三,步骤: 1,由题意得出方程组 (n+d) % 23 = p ; (n+d) % 28 = e ; ...
随机推荐
- jdbc的基本应用
JDBC-----英文全称--------Java Data Base Connectivity是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写 ...
- firefox屏蔽广告真是太好了
在ubuntu上使用firefox有些页面的广告很多,很讨厌. 突然想到是否可以把这些广告屏蔽掉.在网上搜索了一下,发现有个 adblock plus插件,安装上发现广告没有了,很干净. 开源软件就是 ...
- BZOJ3331: [BeiJing2013]压力
传送门 Tarjan的三大应用之一:求解点双联通分量. 求解点双联通分量.然后缩点,差分优化即可. //BZOJ 3331 //by Cydiater //2016.10.29 #include &l ...
- No module named migrate.versioning
在学习mega-tutorial的数据库章节时创建数据库遇到了问题,在stackoverflow上找到了结果 pip install sqlalchemy==0.7.9 pip install sql ...
- HDFS中JAVA API的使用
HDFS中JAVA API的使用 HDFS是一个分布式文件系统,既然是文件系统,就可以对其文件进行操作,比如说新建文件.删除文件.读取文件内容等操作.下面记录一下使用JAVA API对HDFS中的 ...
- UITableView的添加、删除、移动操作
#pragma mark -----表视图的移动操作----- //移动的第一步也是需要将表视图的编辑状态打开 //2.指定哪些行可以进行移动 - (BOOL)tableView:(UITableVi ...
- sql server 执行上100mb sql sql sql server 无法执行脚本 没有足够的内存继续执行
cmd osql -S 服务器名称 -E -i sql文件路径 ------------------------------------------------------ 最近遇到一个问题,在sq ...
- QQ空间HD(6)-实现自定义的选项卡切换效果
DJTabbarButton.m #import "DJTabbarButton.h" @implementation DJTabbarButton - (instancetype ...
- [Nhibernate]SchemaExport工具的使用(一)——通过映射文件修改数据表
目录 写在前面 文档与系列文章 SchemaExport工具 SchemaUpdate工具 一个例子 总结 写在前面 上篇文章介绍了使用代码生成器的nhibernate模版来生成持久化类,映射文件等内 ...
- JS自动缩放页面图片
/** * 缩略图 * * @param bool isScaling 是否缩放 * @param int width 宽度 * @param int height 高度 * @param strin ...