N皇后

力扣题目链接(opens new window)

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

  • 输入:n = 4
  • 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
  • 解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

  • 输入:n = 1
  • 输出:[["Q"]]

思路

如何使用回溯方法去搜索一个二维数组?(难点)

其实本题的难点就主要是对于二维数组的操作的不熟练造成的,画个图示先再说:

上图展示了在一个 4X4 的棋盘中,其中一种正确摆放结果的获取过程。如图所示,实际上在棋盘(二维数组)中搜索摆放结果时,可以逐层搜索

即:把每层递归看做棋盘中的一层,当前递归处理当前层棋盘的搜索任务

那么棋盘有多大,最后就会触发多少层递归(这里是 4X4 所以有4层递归)

二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。当我们遍历到棋盘的最底层时也就到了叶子节点处,此时搜索结束。(结束条件)

代码分析

还是老一套,回溯三部曲

三部曲

1、确定回溯函数的参数以及返回值

看题目给的输出结果得知,我们仍需定义一个二维结果数组res;

输入参数有:棋盘的大小n, 遍历行数记录遍历row以及一维数组chessboard(充当单层棋盘,不要在一开头就定义,因为要每行都清空)

class Solution {
private:
vector<vector<string>> res;
void backtracking(int n, int row, vector<string>& chessboard){//确定回溯函数的参数以及返回值 } public:
vector<vector<string>> solveNQueens(int n) { }
};

2、确定终止条件

根据上面的讨论,我们希望在遍历到棋盘底部的时候结束

这很好判断,通过row来看即可,row == n就到底了

class Solution {
private:
vector<vector<string>> res;
void backtracking(int n, int row, vector<string>& chessboard){//确定回溯函数的参数以及返回值
//确定终止条件
if(row == n){//将单层棋盘结果,也就是chessboard,保存至二维结果数组
res.push_back(chessboard);
return;
}
} public:
vector<vector<string>> solveNQueens(int n) { }
};

3、确定单层处理逻辑

变量row代表着棋盘的行,也控制着递归的深度

而每层里面的for中的循环变量我们命名为col,其控制着棋盘的列

通过行列变量的配合最终确定皇后的位置

与此同时,在单层处理逻辑中,我们还要加入对N皇后问题规则进行判断的函数isVaild,用以确定当前摆放位置是否合法

class Solution {
private:
vector<vector<string>> res;
void backtracking(int n, int row, vector<string>& chessboard){//确定回溯函数的参数以及返回值
//确定终止条件
if(row == n){//将单层棋盘结果,也就是chessboard,保存至二维结果数组
res.push_back(chessboard);
return;
}
//确定单层处理逻辑,每次都从新的列开始搜,因此col初始值是0
for(int col = 0; col < n; ++col){
if(isVaild()){
chessboard[row][col] = 'Q';
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.';//题干中给了用'.'表示空
}
}
} public:
vector<vector<string>> solveNQueens(int n) { }
};

注意在进入下一层递归时要跳过当前行

规则判断函数isVaild

在N皇后问题中,皇后的摆放规则如下:

  • 同一行上不能有两个皇后(不能同行
  • 同一列上不能有两个皇后(不能同列
  • 45度和135度角斜线上不能有两个皇后(不能同斜线

那么我们只要在isVaild函数中对行、列以及斜线上的皇后情况进行检查就行

那么容易得出,isVaild函数的输入参数是与回溯函数相同的,即int n, int row, vector<string>& chessboard

不过,我们还需要将col也作为参数输入,既然要检查行,行不能不给啊

bool isVaild(int row, int col, vector<string>& chessboard, int n){
//检查列,就要指定列遍历行
for(int i = 0; i < row, ++i){
if(chessboard[i][col] == 'Q') return false;
}
//检查45°,以4X4为例,检查以下坐标
//(0,0)(1,1)(2,2)(3,3)
for(int i = row - 1, j = col - 1; i >= 0 && j>= 0; --i , --j){
if(chessboard[i][j] == 'Q') return false;
} //检查135°
//检查除45°涉及的坐标以外的所有坐标,顺序可能是乱的,但一定都会检查到,不理解子集画一画想一想
for(int i = row - 1, j = col + 1; i >= 0 && j < n; --i , ++j){//注意条件,j要++
if(chessboard[i][j] == 'Q') return false;
}
return true;
}

注意事项:

1、这里其实我们不用去检查行(类似检查列的那种操作),因为一层递归for只拿行中的一个数,不会有重

2、关于遍历45度和135度的逻辑,如果实在忘了就自己画个图理解一下

3、实现45度和135度遍历时,我们使用的for的遍历条件是关键,请注意记忆

  • 45度时,row和col作为输入肯定越给越大,因此i、j的值每次遍历时都会变大,而遍历条件是 i >= 0 && j>= 0,因此需要--
  • 135度时,row和col作为输入也会越给越大,但j的遍历条件是要小于n,因此其要++

(有新理解再补充)

完整代码

class Solution {
private:
vector<vector<string>> res;
void backtracking(int n, int row, vector<string>& chessboard){//确定回溯函数的参数以及返回值
//确定终止条件
if(row == n){//将单层棋盘结果,也就是chessboard,保存至二维结果数组
res.push_back(chessboard);
return;
}
//确定单层处理逻辑,每次都从新的列开始搜,因此col初始值是0
for(int col = 0; col < n; ++col){
if(isVaild(row, col, chessboard, n)){
chessboard[row][col] = 'Q';
backtracking(n, row + 1, chessboard);//注意要跳过当前行
chessboard[row][col] = '.';//题干中给了用'.'表示空
}
}
} bool isVaild(int row, int col, vector<string>& chessboard, int n){
//检查列,就要指定列遍历行
for(int i = 0; i < row, ++i){
if(chessboard[i][col] == 'Q') return false;
}
//检查45°,以4X4为例,检查以下坐标
//(0,0)(1,1)(2,2)(3,3)
for(int i = row - 1, j = col - 1; i >= 0 && j>= 0; --i , --j){
if(chessboard[i][j] == 'Q') return false;
} //检查135°
//检查除45°涉及的坐标以外的所有坐标,顺序可能是乱的,但一定都会检查到,不理解子集画一画想一想
for(int i = row - 1, j = col + 1; i >= 0 && j < n; --i , ++j){//注意条件,j要++
if(chessboard[i][j] == 'Q') return false;
}
return true;
} public:
vector<vector<string>> solveNQueens(int n) {
//定义单行棋盘chessboard
vector<string> chessboard(n, '.');
backtracking(n, 0, chessboard);
return res;
}
};

【LeetCode回溯算法#10】图解N皇后问题(即回溯算法在二维数组中的应用)的更多相关文章

  1. 剑指offer系列——二维数组中,每行从左到右递增,每列从上到下递增,设计算法找其中的一个数

    题目:二维数组中,每行从左到右递增,每列从上到下递增,设计一个算法,找其中的一个数 分析: 二维数组这里把它看作一个矩形结构,如图所示: 1 2 8 2 4 9 12 4 7 10 13 6 8 11 ...

  2. LeetCode二维数组中的查找

    LeetCode 二维数组中的查找 题目描述 在一个 n*m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增.请完成一个搞笑的函数,输入这样的一个二维数组和一个整数,判断数 ...

  3. 【LeetCode】剑指 Offer 04. 二维数组中的查找

    二维数组查找:线性查找法 有二维数组: [  [1,   4,  7, 11, 15],  [2,   5,  8, 12, 19],  [3,   6,  9, 16, 22],  [10, 13, ...

  4. Java数组排序基础算法,二维数组,排序时间计算,随机数产生

    import java.util.Arrays; //包含Arrays import java.util.Random; public class HelloWorld { public static ...

  5. 《剑指Offer》算法题——二维数组查找

    题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. class Solutio ...

  6. 递归分治算法之二维数组二分查找(Java版本)

    [java] /** * 递归分治算法学习之二维二分查找 * @author Sking 问题描述: 存在一个二维数组T[m][n],每一行元素从左到右递增, 每一列元素从上到下递增,现在需要查找元素 ...

  7. java se系列(四) 函数、数组、排序算法、二分法、二维数组

    1 函数 1.1  数的概述 发现不断进行加法运算,为了提高代码的复用性,就把该功能独立封装成一段独立的小程序,当下次需要执行加法运算的时候,就可以直接调用这个段小程序即可,那么这种封装形形式的具体表 ...

  8. 【2048小游戏】——原生js爬坑之遍历算法显示二维数组内容

    引言:做2048小游戏会将横纵方向的数字内容,存储在一个二维数组中,要将这个二维数组中的内容显示在页面上,就一定要用遍历算法来实现了. 一.二维数组存储    首先考虑用二维数组存储所有行数,列数   ...

  9. 【算法编程 C++ Python】二维数组查找

    题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路: 最简单:每一行都 ...

  10. C# 实现二维数组的排序算法(代码)

    class Order { /// <summary> /// 对二维数组排序 /// </summary> /// <param name="values&q ...

随机推荐

  1. locust socektio协议压测

    # -*-coding:UTF-8 -*- from locust import HttpLocust, TaskSet, task, TaskSequence, Locust, events imp ...

  2. vue v-model的原理

    关于v-model v-model 可以实现表单与data里的双向绑定 很多插件上可以在组件上使用v-model,他是如何实现的呢,其实v-model就是一个语法糖 <input v-model ...

  3. POJ I Think I Need a Houseboat

    I Think I Need a Houseboat 思路:距离问题,一道水题 代码: #include <iostream> #include <cmath> using n ...

  4. WSL2与ensp的40故障

    在使用ensp做radius认证的时候看到了Linux平台的freeradius认证服务器,于是使用了Windows平台的sub system: WSL2,按照网上的教程安装,并且安装了docker ...

  5. HDFS、Ceph、GFS、GPFS、Swift、Lustre……容器云选择哪种分布式存储更好?

    HDFS.Ceph.GFS.GPFS.Swift.Lustre--容器云选择哪种分布式存储更好?-51CTO.COM 容器云在使用分布式存储时,HDFS.CEPH.GFS.GPFS.Swift等分布式 ...

  6. AIGC 至少能在两个方面改变当前的世界-纯银

    互联网圈一个正在形成的共识是,web3 只是金融领域的创新,还没有任何征兆能进入大众社会,但 AIGC 对世界的改变正在眼前发生.AIGC 至少能在两个方面改变当前的世界.1.对于缺乏创造力的(文字) ...

  7. 将npm安装镜像切换到淘宝

    cnpm(推荐) 安装 pm install cnpm -g --registry=https://registry.npm.taobao.org 使用 cnpm install [xxxxxxx] ...

  8. 算法题:消除字符串中全部的b和连续的ac

    最近碰到了一道面试题,虽然不难但是临试没想出好的解法,记录下来以作分享. 题目:消除字符串中全部的b和连续的ac 用例: 'aabbc' -> 'a' 'aaabbbccc' -> '' ...

  9. Java基础Day7-值传递和引用传递

    一.值传递 Java都是值传递. 值传递:是指在调用函数时,将实际参数复制一份传递到函数中,这样在函数中如果对参数进行修改,就不会影响到实际参数. 值传递是对基本数据类型而言. 二.引用传递 引用传递 ...

  10. Element UI 父组件el-tabel选择某行跳转子组件,在子组件的el-table中选择数组,添加到父组件操作行中

    解决思路: 1.在父组件选择操作某行数据时,将父组件的行号暂存(index). 2.跳转子组件页面,选择某行数据,点击提交将该行数据传递个父组件 3.父组件取到第一步暂存行号(index),将子组件传 ...