1、雪花算法的用途

  分布式系统中ID生成方案,比较简单的是UUID(Universally Unique Identifier,通用唯一识别码),但是其存在两个明显的弊端:

    一、UUID是128位的,长度过长;

    二、UUID是完全随机的,无法生成递增有序的UUID。

  而现在流行的基于 Snowflake 雪花算法的ID生成方案就可以很好的解决了UUID存在的这两个问题

2、算法原理

  • 1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。

  • 41bit-时间戳,用来记录时间戳,毫秒级。

    - 41位可以表示个数字,

    - 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 ,减1是因为可表示的数值范围是从0开始算的,而不是1。

    - 也就是说41位可以表示个毫秒的值,转化成单位年则是

  • 10bit-工作机器id,用来记录工作机器id。

    - 可以部署在个节点,包括5位datacenterId和5位workerId

    - 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

  • 12bit-序列号,序列号,用来记录同毫秒内产生的不同id。

    - 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。

3、Java 实现雪花算法

public class IdWorker{

//下面两个每个5位,加起来就是10位的工作机器id
private long workerId; //工作id
private long datacenterId; //数据id
//12位的序列号
private long sequence;

public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}

//初始时间戳
private long twepoch = 1288834974657L;

//长度为5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列号id长度
private long sequenceBits = 12L;
//序列号最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);

//工作id需要左移的位数,12位
private long workerIdShift = sequenceBits;
//数据id需要左移位数 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//时间戳需要左移位数 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

//上次时间戳,初始值为负数
private long lastTimestamp = -1L;

public long getWorkerId(){
return workerId;
}

public long getDatacenterId(){
return datacenterId;
}

public long getTimestamp(){
return System.currentTimeMillis();
}

//下一个ID生成算法
public synchronized long nextId() {
long timestamp = timeGen();

//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}

//获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}

//将上次时间戳值刷新
lastTimestamp = timestamp;

/**
* 返回结果:
* (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
* (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
* (workerId << workerIdShift) 表示将工作id左移相应位数
* | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
* 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
*/
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}

//获取时间戳,并与上次时间戳比较
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}

//获取系统时间戳
private long timeGen(){
return System.currentTimeMillis();
}

//---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}

}

雪花算法-Java分布式系统自增id的更多相关文章

  1. 开源一个比雪花算法更好用的ID生成算法(雪花漂移)

    比雪花算法更好用的ID生成算法(单机或分布式唯一ID) 转载及版权声明 本人从未在博客园之外的网站,发表过本算法长文,其它网站所现文章,均属他人拷贝之作. 所有拷贝之作,均须保留项目开源链接,否则禁止 ...

  2. 使用雪花算法为分布式下全局ID、订单号等简单解决方案考虑到时钟回拨

    1.snowflake简介         互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同 ...

  3. 雪花算法 Java 版

    雪花算法根据时间戳生成有序的 64 bit 的 Long 类型的唯一 ID 各 bit 含义: 1 bit: 符号位,0 是正数 1 是负数, ID 为正数,所以恒取 0 41 bit: 时间差,我们 ...

  4. SnowflakeId雪花ID算法,分布式自增ID应用

    概述 snowflake是Twitter开源的分布式ID生成算法,结果是一个Long型的ID.其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器I ...

  5. 雪花算法,生成分布式唯一ID

    2.3 基于算法实现 [转载] 这里介绍下Twitter的Snowflake算法——snowflake,它把时间戳,工作机器id,序列号组合在一起,以保证在分布式系统中唯一性和自增性. snowfla ...

  6. 全局唯一Id:雪花算法

    雪花算法-snowflake 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有 ...

  7. 雪花算法生成分布式ID

    分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占 ...

  8. 雪花算法-snowflake

    雪花算法-snowflake 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有 ...

  9. 分布式系统为什么不用自增id,要用雪花算法生成id???

    1.为什么数据库id自增和uuid不适合分布式id id自增:当数据量庞大时,在数据库分库分表后,数据库自增id不能满足唯一id来标识数据:因为每个表都按自己节奏自增,会造成id冲突,无法满足需求.  ...

  10. 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)

    一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...

随机推荐

  1. 100 行 shell 写个 Docker

    作者:vivo 互联网运维团队- Hou Dengfeng 本文主要介绍使用shell实现一个简易的Docker. 一.目的 在初接触Docker的时候,我们必须要了解的几个概念就是Cgroup.Na ...

  2. java7.14

  3. Excel操作技巧

    命令 获取行号ROW(D2).COLOUM(D2) 快捷键 alt+=求和:alt+f1生成柱形图:alt+回车强制换行:alt+178输入平方:alt+179输入立方: shitf+大十字光标 换位 ...

  4. JZOJ 2114. 【GDKOI2011】反恐任务

    \(\text{Problem}\) 给定一张无向图,\(q\) 次询问,删去一个点或一条相邻两点间的边,问两点是否连通 询问独立 \(\text{Solution}\) 明显的用圆方树把图变成树 然 ...

  5. JZOJ 排列统计

    排列统计 \(Description\) 对于给定的一个长度为n的序列{B[n]},问有多少个序列{A[n]}对于所有的i满足:A[1]-A[i]这i个数字中有恰好B[i]个数字小等于i.其中{A[n ...

  6. Ubuntu20.04获取root权限并用root用户登录

    Ubuntu20.04获取root权限并用root用户登录 转载csdn:静水流深深深! https://blog.csdn.net/qq_42372079/article/details/11758 ...

  7. c# 游戏设计:地图移动

    想实现一个小游戏,先做地图移动.步骤记录如下: 1.百度到一张大的迷宫地图,放在项目的debug目录下,备用. 2.创建一个winform项目,不添加任何界面元素. 3.添加数据成员如下: Pictu ...

  8. array copy() 的简单使用

    源码: public static native void arraycopy(Object src, int srcPos, Object dest, int destPos,int length) ...

  9. 使用iperf测试网卡性能

    1.目标 测试网卡通信性能,同时可以通过改变连接方式(从两台PC网线直连,切换到通过交换机连接)测试交换机最高速率性能. 2.使用工具 硬件:两台PC机(本例用win10 64位).数根网线.交换机 ...

  10. Google Earth Engine——基于新的Landsat SR数据集去云处理

    根据GEE官方公告,明年原来的Landsat/LT05/C01/T1_SR和Landsat/LC08/C01/T1_SR数据集将停止更新,并提供了新的地表反射率数据,就是LANDSAT/LT05/C0 ...