Colab教程(超级详细版)及Colab Pro/Colab Pro+使用评测
一、Colab介绍
Colab是什么?
Colab相关的概念
二、Colab工作流程
准备工作
新建笔记本
载入笔记本
笔记本界面
连接代码执行程序
执行代码块
# 加载云端硬盘
from google.colab import drive
drive.mount('/content/drive') # 查看分配到的GPU
gpu_info = !nvidia-smi
gpu_info = '\n'.join(gpu_info)
if gpu_info.find('failed') >= 0:
print('Not connected to a GPU')
else:
print(gpu_info) # 安装python包
!pip3 install <package>
设置笔记本的运行时类型
管理会话Session
三、Colab重要特性
资源使用的限制
如何合理使用资源?
- 将训练过后的模型日志和其他重要的文件保存到谷歌云盘,而不是本地的实例空间
- 运行的代码必须支持“断点续传”能力,简单来说就是必须定义类似checkpoint功能的函数;假设我们一共需要训练40个epochs,在第30个epoch掉线了之后模型能够从第30个epoch开始训练而不是从头再来
- 仅在模型训练时开启GPU模式,在构建模型或其他非必要情况下使用None模式
- 在网络稳定的情况下开始训练,每隔一段时间查看一下训练的情况
- 注册多个免费的谷歌账号交替使用
四、Colab项目组织
加载数据集
运行Github项目
# 克隆仓库到/content/my-repo目录下
!git clone https://github.com/my-github-username/my-git-repo.git %cd my-git-repo !./train.py --logdir /my/log/path --data_root /my/data/root --resume
from train import my_training_method
my_training_method(arg1, arg2, ...)
import sys
sys.path.append('/content/my-git-repo') # 把git仓库的目录添加到系统目录
如何处理简单项目?
五、实例演示
from google.colab import drive
drive.mount('/content/drive')
!mkdir /content/datasets !tar -xvf "/content/drive/MyDrive/zhihu_colab/ROD-synROD.tar" -C "/content/datasets"
gpu_info = !nvidia-smi
gpu_info = '\n'.join(gpu_info)
if gpu_info.find('failed') >= 0:
print('Not connected to a GPU')
else:
print(gpu_info)
!python3 /content/drive/MyDrive/zhihu_colab/mldl_project/code/train_eval.py \
--data_root /content/datasets/ROD-synROD \
--logdir /content/drive/MyDrive/ \ --
resume \
| tee /content/drive/MyDrive/synRODtoROD.txt -a
六、Colab Pro / Pro+
RAM-磁盘
高RAM
|
磁盘
|
后台运行
|
|
---|---|---|---|
免费
|
|
66GB?
|
|
Pro
|
25GB
|
166GB
|
|
Pro+
|
52GB
|
225GB
|
|
GPU模式下会话数量
标准RAM
|
高RAM
|
后台运行
|
|
---|---|---|---|
免费
|
1
|
|
|
Pro
|
2
|
1
|
|
Pro+
|
3
|
3
|
2(无论是否高RAM)
|
使用Pro/Pro+的个人感受
七、补充内容
如何让代码有“断点续传”的能力?
def save_checkpoint(path: Text,
epoch: int,
modules: Union[nn.Module, Sequence[nn.Module]],
optimizers: Union[opt.Optimizer, Sequence[opt.Optimizer]],
safe_replacement: bool = True):
"""
Save a checkpoint of the current state of the training, so it can be resumed.
This checkpointing function assumes that there are no learning rate schedulers or gradient scalers for automatic
mixed precision.
:param path:
Path for your checkpoint file
:param epoch:
Current (completed) epoch
:param modules:
nn.Module containing the model or a list of nn.Module objects
:param optimizers:
Optimizer or list of optimizers
:param safe_replacement:
Keep old checkpoint until the new one has been completed
:return:
""" # This function can be called both as
# save_checkpoint('/my/checkpoint/path.pth', my_epoch, my_module, my_opt)
# or
# save_checkpoint('/my/checkpoint/path.pth', my_epoch, [my_module1, my_module2], [my_opt1, my_opt2])
if isinstance(modules, nn.Module):
modules = [modules]
if isinstance(optimizers, opt.Optimizer):
optimizers = [optimizers] # Data dictionary to be saved
data = {
'epoch': epoch,
# Current time (UNIX timestamp)
'time': time.time(),
# State dict for all the modules
'modules': [m.state_dict() for m in modules],
# State dict for all the optimizers
'optimizers': [o.state_dict() for o in optimizers]
} # Safe replacement of old checkpoint
temp_file = None
if os.path.exists(path) and safe_replacement:
# There's an old checkpoint. Rename it!
temp_file = path + '.old'
os.rename(path, temp_file) # Save the new checkpoint
with open(path, 'wb') as fp:
torch.save(data, fp)
# Flush and sync the FS
fp.flush()
os.fsync(fp.fileno()) # Remove the old checkpoint
if temp_file is not None:
os.unlink(path + '.old') def load_checkpoint(path: Text,
default_epoch: int,
modules: Union[nn.Module, Sequence[nn.Module]],
optimizers: Union[opt.Optimizer, Sequence[opt.Optimizer]],
verbose: bool = True):
"""
Try to load a checkpoint to resume the training.
:param path:
Path for your checkpoint file
:param default_epoch:
Initial value for "epoch" (in case there are not snapshots)
:param modules:
nn.Module containing the model or a list of nn.Module objects. They are assumed to stay on the same device
:param optimizers:
Optimizer or list of optimizers
:param verbose:
Verbose mode
:return:
Next epoch
"""
if isinstance(modules, nn.Module):
modules = [modules]
if isinstance(optimizers, opt.Optimizer):
optimizers = [optimizers] # If there's a checkpoint
if os.path.exists(path):
# Load data
data = torch.load(path, map_location=next(modules[0].parameters()).device) # Inform the user that we are loading the checkpoint
if verbose:
print(f"Loaded checkpoint saved at {datetime.fromtimestamp(data['time']).strftime('%Y-%m-%d %H:%M:%S')}. "
f"Resuming from epoch {data['epoch']}") # Load state for all the modules
for i, m in enumerate(modules):
modules[i].load_state_dict(data['modules'][i]) # Load state for all the optimizers
for i, o in enumerate(optimizers):
optimizers[i].load_state_dict(data['optimizers'][i]) # Next epoch
return data['epoch'] + 1
else:
return default_epoch
在主程序train.py正式开始训练前,添加下面的语句:
if args.resume: # args.resume是命令行输入的参数,用于指示要不要加载上次训练的结果
first_epoch = load_checkpoint(checkpoint_path, first_epoch, net_list, optims_list)
# Save checkpoint
save_checkpoint(checkpoint_path, epoch, net_list, optims_list)
如果分到了Tesla T4怎么办?
结语:一不留神写了一万多字了!希望这个超详细的Colab教程能对大家有所帮助,大家要是发现了什么新的技巧欢迎在评论区留言~
Colab教程(超级详细版)及Colab Pro/Colab Pro+使用评测的更多相关文章
- 手把手Maven搭建SpringMVC+Spring+MyBatis框架(超级详细版)
手把手Maven搭建SpringMVC+Spring+MyBatis框架(超级详细版) SSM(Spring+SpringMVC+Mybatis),目前较为主流的企业级架构方案.标准的MVC设计模式, ...
- CentOS 6.4 服务器版安装教程(超级详细图解)
附:CentOS 6.4下载地址 32位:http://mirror.centos.org/centos/6.4/isos/i386/CentOS-6.4-i386-bin-DVD1to2.torre ...
- caffe学习--使用caffe中的imagenet对自己的图片进行分类训练(超级详细版) -----linux
http://blog.csdn.net/u011244794/article/details/51565786 标签: caffeimagenet 2016-06-02 12:57 9385人阅读 ...
- VMware Workstation 12 Pro安装CentOs图文教程(超级详细)
本文记录了VMware Workstation 12 Pro安装CentOs的整个过程,具体如下: VMware Workstation 12: CENTOS 6.4 : 创建虚拟机 1.首先安装好V ...
- CentOS 服务器版安装教程(超级详细图解)
使用安装说明:http://www.jb51.net/os/85895.html
- Navicate12激活教程(完整详细版)
写在前面 最近身边的小伙伴苦于没有Navicat12的激活工具,不能使用最新版的Navicat,鉴于此,遂将自己整理的文章贴出来,供大家参考,不过个人还是主张维护正版的意愿,如果经济实力允许的话,还是 ...
- Windows 10 + kali Linux 双系统安装教程(详细版)
准备工具如下: kali Linux 镜像 准备一4G以上的U盘 制作U盘启动盘工具- Win32DiskImager 添加引导工具-EasyBCD 留出一个空的盘,哪个盘的空间比较大可以压缩出大概2 ...
- hexo+github搭建博客(超级详细版,精细入微)
# 前言 你了解[Hexo]( https://hexo.io/zh-cn/ "Hexo官网")吗? Hexo是一个静态博客框架,基于Node.js,将Markdown文章通过渲染 ...
- cnpm的安装(超级详细版)
1. 安装node 打开黑窗口 安装node 网上教程很多,我就不加上了 2.node -v 查看node是否已安装 3.安装淘宝镜像 npm install -g cnpm -registry ...
随机推荐
- 【Java分享客栈】SpringBoot整合WebSocket+Stomp搭建群聊项目
前言 前两周经常有大学生小伙伴私信给我,问我可否有偿提供毕设帮助,我说暂时没有这个打算,因为工作实在太忙,现阶段无法投入到这样的领域内,其中有两个小伙伴又问到我websocket该怎么使用,想给自己的 ...
- spring-注入集合对象
1.创建Stu类 package com.spring.collections; import java.util.Arrays; import java.util.List; import java ...
- TNS-12533: TNS:illegal ADDRESS parameters(修复)
修复 TNS-12533: TNS:illegal ADDRESS parameters oracle@prd:/home/oracle$sqlplus sys/abc@fp as sysdba SQ ...
- C#+Access 员工信息管理--简单的增删改查操作和.ini配置文件的读写操作。
1.本程序的使用的语言是C#,数据库是Access2003.主要是对员工信息进行简单的增删改查操作和对.ini配置文件的读写操作. 2.代码运行效果如下: 功能比较简单.其中在得到查询结果后,在查询结 ...
- Python paho-mqtt使用心得
一.概述 一)基本概念 使用回调处理从MQTT代理返回的数据,要使用回调需要先定义回调函数然后将其指派给客户端实例(client). 例如: # 定义一个回调函数 def on_connect(cli ...
- pgpool-II 4.3 中文手册 - 入门教程
本章解释了如何开始使用 Pgpool-II. 安装 在本节中,我们假设您已经安装了 Pgpool-II 与 PostgreSQL 集群. 你的第一个复制(Replication) 在本节中,我们将解释 ...
- 程序员延寿指南「GitHub 热点速览 v.22.17」
很多人对程序员的固有印象之一便是常加班.易"猝死"!近几年的许多报道似乎也进一步加深了这种印象.应该如何更好地健康地活着.敲喜欢的代码呢?HowToLiveLonger 教你如何从 ...
- MySQL left join 引发的惨案
当我用这个进行更改值时,type未控制order表 其他数据被更改 还好备份数据表了(这里就体现了备份的重要性) UPDATE expense_order as a left join ( SELEC ...
- SpringBoot 如何进行参数校验
为什么需要参数校验 在日常的接口开发中,为了防止非法参数对业务造成影响,经常需要对接口的参数进行校验,例如登录的时候需要校验用户名和密码是否为空,添加用户的时候校验用户邮箱地址.手机号码格式是否正确. ...
- Flume 详解&实战
Flume 1. 概述 Flume是一个高可用,高可靠,分布式的海量日志采集.聚合和传输的系统.Flume基于流式架构,灵活简单. Flume的作用 Flume最主要的作用就是,实时读取服务器本地磁盘 ...