PyTorch复现GoogleNet学习笔记

一篇简单的学习笔记,实现五类花分类,这里只介绍复现的一些细节

如果想了解更多有关网络的细节,请去看论文《Going Deeper with Convolutions

简单说明下数据集,下载链接,这里用的数据与AlexNet的那篇是一样的所以不在说明

一、环境准备

可以去看之前的一篇博客,里面写的很详细了,并且推荐了一篇炮哥的环境搭建环境

  • Anaconda3(建议使用)
  • python=3.6/3.7/3.8
  • pycharm (IDE)
  • pytorch=1.11.0 (pip package)
  • torchvision=0.12.0 (pip package)
  • cudatoolkit=11.3

二、模型搭建、训练

1.整体框图

GoogleNet整体框图

两个红色框是表示辅助输出器的位置

inception结构

辅助分类器结构

说明:

GoogleNet作为2014年的ILSVRC比赛的冠军相比VGG,网络参数只有vgg的1/10不到

其创新点:

  • 引入了inception结构
  • 使用1*1的卷积进行降维以及映射处理
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大降低网络的参数)

2.net.py

网络整体结构代码

  1 import torch.nn as nn
2 import torch
3 import torch.nn.functional as F
4
5
6 class GoogLeNet(nn.Module):
7 def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
8 super(GoogLeNet, self).__init__()
9 self.aux_logits = aux_logits
10
11 self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
12 self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
13
14 self.conv2 = BasicConv2d(64, 64, kernel_size=1)
15 self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
16 self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
17
18 self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
19 self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
20 self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
21
22 self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
23 self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
24 self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
25 self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
26 self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
27 self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
28
29 self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
30 self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
31
32 if self.aux_logits:
33 self.aux1 = InceptionAux(512, num_classes)
34 self.aux2 = InceptionAux(528, num_classes)
35
36 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
37 self.dropout = nn.Dropout(0.4)
38 self.fc = nn.Linear(1024, num_classes)
39 if init_weights:
40 self._initialize_weights()
41
42 def forward(self, x):
43 # N x 3 x 224 x 224
44 x = self.conv1(x)
45 # N x 64 x 112 x 112
46 x = self.maxpool1(x)
47 # N x 64 x 56 x 56
48 x = self.conv2(x)
49 # N x 64 x 56 x 56
50 x = self.conv3(x)
51 # N x 192 x 56 x 56
52 x = self.maxpool2(x)
53
54 # N x 192 x 28 x 28
55 x = self.inception3a(x)
56 # N x 256 x 28 x 28
57 x = self.inception3b(x)
58 # N x 480 x 28 x 28
59 x = self.maxpool3(x)
60 # N x 480 x 14 x 14
61 x = self.inception4a(x)
62 # N x 512 x 14 x 14
63 if self.training and self.aux_logits: # eval model lose this layer
64 aux1 = self.aux1(x)
65
66 x = self.inception4b(x)
67 # N x 512 x 14 x 14
68 x = self.inception4c(x)
69 # N x 512 x 14 x 14
70 x = self.inception4d(x)
71 # N x 528 x 14 x 14
72 if self.training and self.aux_logits: # eval model lose this layer
73 aux2 = self.aux2(x)
74
75 x = self.inception4e(x)
76 # N x 832 x 14 x 14
77 x = self.maxpool4(x)
78 # N x 832 x 7 x 7
79 x = self.inception5a(x)
80 # N x 832 x 7 x 7
81 x = self.inception5b(x)
82 # N x 1024 x 7 x 7
83
84 x = self.avgpool(x)
85 # N x 1024 x 1 x 1
86 x = torch.flatten(x, 1)
87 # N x 1024
88 x = self.dropout(x)
89 x = self.fc(x)
90 # N x 1000 (num_classes)
91 if self.training and self.aux_logits: # eval model lose this layer
92 return x, aux2, aux1
93 return x
94
95 def _initialize_weights(self):
96 for m in self.modules():
97 if isinstance(m, nn.Conv2d):
98 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
99 if m.bias is not None:
100 nn.init.constant_(m.bias, 0)
101 elif isinstance(m, nn.Linear):
102 nn.init.normal_(m.weight, 0, 0.01)
103 nn.init.constant_(m.bias, 0)
104
105
106 class Inception(nn.Module):
107 def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
108 super(Inception, self).__init__()
109
110 self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
111
112 self.branch2 = nn.Sequential(
113 BasicConv2d(in_channels, ch3x3red, kernel_size=1),
114 BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) # 保证输出大小等于输入大小
115 )
116
117 self.branch3 = nn.Sequential(
118 BasicConv2d(in_channels, ch5x5red, kernel_size=1),
119 # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
120 # Please see https://github.com/pytorch/vision/issues/906 for details.
121 BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小
122 )
123
124 self.branch4 = nn.Sequential(
125 nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
126 BasicConv2d(in_channels, pool_proj, kernel_size=1)
127 )
128
129 def forward(self, x):
130 branch1 = self.branch1(x)
131 branch2 = self.branch2(x)
132 branch3 = self.branch3(x)
133 branch4 = self.branch4(x)
134
135 outputs = [branch1, branch2, branch3, branch4]
136 return torch.cat(outputs, 1)
137
138
139 class InceptionAux(nn.Module):
140 def __init__(self, in_channels, num_classes):
141 super(InceptionAux, self).__init__()
142 self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
143 self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]
144
145 self.fc1 = nn.Linear(2048, 1024)
146 self.fc2 = nn.Linear(1024, num_classes)
147
148 def forward(self, x):
149 # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
150 x = self.averagePool(x)
151 # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
152 x = self.conv(x)
153 # N x 128 x 4 x 4
154 x = torch.flatten(x, 1)
155 x = F.dropout(x, 0.5, training=self.training)
156 # N x 2048
157 x = F.relu(self.fc1(x), inplace=True)
158 x = F.dropout(x, 0.5, training=self.training)
159 # N x 1024
160 x = self.fc2(x)
161 # N x num_classes
162 return x
163
164
165 class BasicConv2d(nn.Module):
166 def __init__(self, in_channels, out_channels, **kwargs):
167 super(BasicConv2d, self).__init__()
168 self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
169 self.relu = nn.ReLU(inplace=True)
170
171 def forward(self, x):
172 x = self.conv(x)
173 x = self.relu(x)
174 return x
175
176 if __name__=="__main__":
177 x = torch.rand([1, 3, 224, 224])
178 model = GoogLeNet(num_classes=5)
179 y = model(x)
180 print(y)
181
182 # 统计模型参数
183 # sum = 0
184 # for name, param in model.named_parameters():
185 # num = 1
186 # for size in param.shape:
187 # num *= size
188 # sum += num
189 # #print("{:30s} : {}".format(name, param.shape))
190 # print("total param num {}".format(sum))#total param num 10,318,655

搭建模型代码

写完后保存,运行可以检查是否报错

如果需要打印模型参数,将代码注释去掉即可,得到googlenet的参数为10,318,655

3.数据划分

这里与AlexNet用的一样

分好后的数据集

运行下面代码将数据按一定比例,划分为训练集和验证集

数据划分的代码

4.train.py

训练的代码,训练结束后画出训练集和验证集的loss,准确度

  1 import json
2 import torch
3 from torch import nn
4 from torchvision import transforms,datasets,utils
5 from torch import optim
6 from torch.optim import lr_scheduler
7 from tqdm import tqdm#用于画进度条
8 from model import GoogLeNet
9 import matplotlib.pyplot as plt
10 import os
11 import sys
12
13
14
15 def main():
16 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
17 print("using {} device".format(device))
18
19 data_transform = {
20 "train": transforms.Compose([transforms.RandomResizedCrop(224),
21 transforms.RandomHorizontalFlip(),
22 transforms.ToTensor(),
23 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
24 "val": transforms.Compose([transforms.Resize((224, 224)),
25 transforms.ToTensor(),
26 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
27
28 #训练集以及测试集路径
29 ROOT_TRAIN = 'data/train'
30 ROOT_TEST = 'data/val'
31
32 batch_size = 16
33
34 train_dataset = datasets.ImageFolder(root=ROOT_TRAIN,transform=data_transform["train"])
35 train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
36
37 train_num = len(train_dataset)
38
39 flow_list = train_dataset.class_to_idx#转换维字典,train_dataset里有这个对象
40 # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
41 cla_dict = dict((val,key) for key,val in flow_list.items())#键值对转换
42 #{0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
43 # write dict into json file
44 json_str = json.dumps(cla_dict, indent=4)
45 with open('class_indices.json', 'w') as json_file:
46 json_file.write(json_str) # 保存json文件(好处,方便转换为其它类型数据)用于预测用
47
48 val_dataset = datasets.ImageFolder(root=ROOT_TEST,transform=data_transform["val"])
49 val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
50
51 val_num = len(val_dataset)
52
53 print("using {} images for training, {} images for validation.".format(train_num,
54 val_num))
55 net = GoogLeNet(num_classes=5,aux_logits=True,init_weights=True)
56
57 #加载预训练模型
58 # weights_path = "save_model/best_model.pth"
59 # assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
60 # missing_keys, unexpected_keys = net.load_state_dict(torch.load(weights_path,),strict=False)
61
62 net.to(device)
63 loss_fc = nn.CrossEntropyLoss()
64 optimizer = optim.Adam(net.parameters(), lr=0.0003)
65 # 学习率每隔10epoch变为原来的0.1
66 lr_s = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
67
68 #定义训练函数
69 def train(dataloader, net, loss_fn, optimizer,i,epoch):
70 net.train()
71 loss, current,n = 0.0, 0.0,0
72 train_bar = tqdm(train_loader, file=sys.stdout)
73 for batch, (x, y) in enumerate(train_bar):
74 # 前向传播
75 image, y = x.to(device), y.to(device)
76 logits,aux_logits1,aux_logits2 = net(image)
77 loss0 = loss_fn(logits,y)
78 loss1 = loss_fn(aux_logits1,y)
79 loss2 = loss_fn(aux_logits2,y)
80 cur_loss = loss0 + loss1*0.3 + loss2*0.3#在论文中辅助分类器权重为0.3
81 _, pred = torch.max(logits, axis=-1)
82 cur_acc = torch.sum(y == pred) / logits.shape[0]
83 # 反向传播
84 optimizer.zero_grad() # 梯度清零
85 cur_loss.backward()
86 optimizer.step()
87 loss += cur_loss
88 current += cur_acc
89 n +=1
90 train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(i + 1, epoch, cur_loss)
91 train_loss = loss / n
92 train_acc = current / n
93
94 print(f"tran_loss:{train_loss}")
95 print(f"tran_acc:{train_acc}")
96 return train_loss, train_acc
97
98 def val(dataloader,net,loss_fn):
99 #验证模式
100 net.eval()
101 loss, current ,n = 0.0, 0.0,0
102 with torch.no_grad():
103 val_bar = tqdm(val_loader, file=sys.stdout)
104 for batch,(x,y) in enumerate(val_bar):
105 #前向传播
106 image,y = x.to(device),y.to(device)
107 output = net(image)
108 cur_loss = loss_fn(output,y)
109 _,pred = torch.max(output,axis=-1)
110 cur_acc = torch.sum(y==pred)/output.shape[0]
111 loss += cur_loss
112 current += cur_acc
113 val_bar.desc = "val epoch[{}/{}] loss:{:.3f}".format(i + 1, epoch, cur_loss)
114 n +=1
115 val_loss = loss / n
116 val_acc = current / n
117 print(f"val_loss:{val_loss}")
118 print(f"val_acc:{val_acc}")
119 return val_loss,val_acc
120
121 # 解决中文显示问题
122 plt.rcParams['font.sans-serif'] = ['SimHei']
123 plt.rcParams['axes.unicode_minus'] = False
124
125 # 画图函数
126 def matplot_loss(train_loss, val_loss):
127 plt.figure()
128 plt.plot(train_loss, label='train_loss') # 画图
129 plt.plot(val_loss, label='val_loss')
130 plt.legend(loc='best') # 图例
131 plt.ylabel('loss', fontsize=12)
132 plt.xlabel('epoch', fontsize=12)
133 plt.title("训练集和验证集loss对比图")
134 plt.savefig('./loss.jpg')
135
136 def matplot_acc(train_acc, val_acc):
137 plt.figure()#声明一个新画布,这样两张图像的结果就不会出现重叠
138 plt.plot(train_acc, label='train_acc') # 画图
139 plt.plot(val_acc, label='val_acc')
140 plt.legend(loc='best') # 图例
141 plt.ylabel('acc', fontsize=12)
142 plt.xlabel('epoch', fontsize=12)
143 plt.title("训练集和验证集acc对比图")
144 plt.savefig('./acc.jpg')
145
146 # 开始训练
147 train_loss_list = []
148 val_loss_list = []
149 train_acc_list = []
150 val_acc_list = []
151
152 epoch = 60
153 max_acc = 0
154
155 for i in range(epoch):
156 lr_s.step()#学习率优化,10epoch变为原来的0.5
157
158 train_loss,train_acc = train(train_loader,net,loss_fc,optimizer,i,epoch)
159
160 val_loss,val_acc = val(val_loader,net,loss_fc)
161
162 train_loss_list.append(train_loss)
163 train_acc_list.append(train_acc)
164 val_acc_list.append(val_acc)
165 val_loss_list.append(val_loss)
166
167 # 保存最好的模型权重
168 if val_acc > max_acc:
169 folder = 'save_model'
170 if not os.path.exists(folder):
171 os.mkdir('save_model')
172 max_acc = val_acc
173 print(f'save best model,第{i + 1}轮')
174 torch.save(net.state_dict(), 'save_model/best_model.pth') # 保存网络权重
175 # 保存最后一轮
176 if i == epoch - 1:
177 torch.save(net.state_dict(), 'save_model/last_model.pth') # 保存
178
179 print("done")
180
181 #画图
182 matplot_loss(train_loss_list,val_loss_list)
183 matplot_acc(train_acc_list,val_acc_list)
184 if __name__=="__main__":
185 os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
186 main()

训练代码

最后一轮的结果,总共60轮,3360张训练图片,364张验证图片,用时2h,batchsize=16

训练结束后可以得到训练集和验证集的loss,acc对比图

简单的评估下:可以看到与之前的AlexNet相比,验证集的准确率好多了。val_acc大概再40轮后就一直在84-85浮动,看val_loss,估计在40轮之后对训练集过拟合,从train_acc可以看出,精确度一直在变高,但验证集精确度一直在85左右

三、模型推理

测试代码,这里用的测试集其实是之前训练时的验证集,本来是要另外创建一个的

这里路径需要自己改到需要推理的图片

 1 import os
2 import json
3 import torch
4 from PIL import Image
5 from torchvision import transforms
6 import matplotlib.pyplot as plt
7 from model import GoogLeNet
8
9 def main():
10 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
11
12 data_transform = transforms.Compose([
13 transforms.Resize((224,224)),
14 transforms.ToTensor(),
15 transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))
16 ])
17 #load image
18 img_path = "data/val/daisy/476856232_7c35952f40_n.jpg"
19 assert os.path.exists(img_path),"file:'{}' dose not exist. ".format(img_path)
20 img = Image.open(img_path)
21 plt.imshow(img)
22
23 #[N, C, H, W]归一化
24 img = data_transform(img)
25 # expand batch dimension
26 img = torch.unsqueeze(img,dim=0)
27
28 # read class_indict
29 json_path = './class_indices.json'
30 assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
31
32 with open(json_path,"r") as f:
33 class_indict = json.load(f)
34
35 #实例化模型
36 model = GoogLeNet(num_classes=5,aux_logits=False).to(device)
37
38 #加载权重
39 weights_path = "save_model/best_model.pth"
40 assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
41 missing_keys,unexpected_keys = model.load_state_dict(torch.load(weights_path,map_location=device),
42 strict=False)
43 model.eval()
44 with torch.no_grad():
45 #预测
46 output = torch.squeeze(model(img.to(device))).cpu()
47 predict = torch.softmax(output, dim=0)
48 predict_cla = torch.argmax(predict).numpy()
49 #最大概率结果
50 print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
51 predict[predict_cla].numpy())
52 #前10个结果
53 plt.title(print_res)
54 for i in range(len(predict)):
55 print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
56 predict[i].numpy()))
57 plt.show()
58 if __name__=="__main__":
59 os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
60 main()

模型推理代码

运行代码后,对模型进行推理,去网上找几张图片,我这里随便从验证集拿了一张

下面是一张雏菊的照片,以及5类花预测的概率显示(右边)

总结

googlenet还是挺可以的

自己敲一下代码,会学到很多不懂的东西

最后,多看,多学,多试,总有一天你会称为大佬!

PyTorch复现GoogleNet学习笔记的更多相关文章

  1. Pytorch线性规划模型 学习笔记(一)

    Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...

  2. Note | PyTorch官方教程学习笔记

    目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differenti ...

  3. pytorch文档学习笔记(2)

    三.CUDA semantics 二.Broadcasting semantics  广播机制 广播机制要第一项对齐,第一项对齐后(相等)才能广播,或者某个第一项为1. 但如果两个size个数相等,则 ...

  4. Pytorch CNN网络MNIST数字识别 [超详细记录] 学习笔记(三)

    目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 ...

  5. 【pytorch】学习笔记(四)-搭建神经网络进行关系拟合

    [pytorch学习笔记]-搭建神经网络进行关系拟合 学习自莫烦python 目标 1.创建一些围绕y=x^2+噪声这个函数的散点 2.用神经网络模型来建立一个可以代表他们关系的线条 建立数据集 im ...

  6. 【pytorch】学习笔记(三)-激励函数

    [pytorch]学习笔记-激励函数 学习自:莫烦python 什么是激励函数 一句话概括 Activation: 就是让神经网络可以描述非线性问题的步骤, 是神经网络变得更强大 1.激活函数是用来加 ...

  7. 【pytorch】学习笔记(二)- Variable

    [pytorch]学习笔记(二)- Variable 学习链接自莫烦python 什么是Variable Variable就好像一个篮子,里面装着鸡蛋(Torch 的 Tensor),里面的鸡蛋数不断 ...

  8. 【PyTorch深度学习】学习笔记之PyTorch与深度学习

    第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...

  9. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  10. Vue学习笔记-2

    前言 本文非vue教程,仅为学习vue过程中的个人理解与笔记,有说的不正确的地方欢迎指正讨论 1.computed计算属性函数中不能使用vm变量 在计算属性的函数中,不能使用Vue构造函数返回的vm变 ...

随机推荐

  1. vue2.x引入threejs

    @ 目录 vue2.x引入threejs npm安装 使用指定版本: 其他插件 实例 强调 vue2.x引入threejs npm安装 npm install three 使用指定版本: npm in ...

  2. C++ STL 概述_严丝合缝的合作者们

    1. 初识 STL 什么是STL? STL(Standard Template Library) 是C++以模板形式提供的一套标准库,提供了很多开发过程需要的通用功能模块.使用 STL ,可以让开发者 ...

  3. C++ 标准文档

    正式的 C++ 标准文档不是免费的,需要付费购买,可以到 ISO Store 或者其成员国的标准商店购买正版(中国 SACinfo 标准信息服务网,美国 ANSI WebStore,其他成员国可查看 ...

  4. Linux实战笔记_CentOS7_格式化磁盘

    fdisk -l #检查是否添加成功(添加一块磁盘并重启计算机后) fdisk /dev/sdb #格式化磁盘 mount /dev/sdb1 /opt #挂载到/opt目录 df -h #查看是否挂 ...

  5. 一天十道Java面试题----第二天(HashMap和hashTable的区别--------》sleep、wait、join)

    这里是参考B站上的大佬做的面试题笔记.大家也可以去看视频讲解!!! 文章目录 11.HashMap和HashTable的区别及底层实现 12.ConcurrentHashMap原理简述,jdk7和jd ...

  6. 齐博x1万能数据统计之fun函数

    使用 fun("count@info",'数据表名','用户uid') 可以统计指定任何数据表的记录条数 fun("count@info",'cms_conte ...

  7. 齐博x1当前URL标签

    当前URL标签 {:get_url('location')} 当前URL的二维码标签 {:urls('index/qrcode/index')}?url={:urlencode(get_url('lo ...

  8. Windows7下驱动开发与调试体系构建——4.在x64下使用汇编代码(x86下的_asm)

    目录/参考资料:https://www.cnblogs.com/railgunRG/p/14412321.html asm文件设置 在vs x64中无法使用_asm关键字,需要使用.asm文件. 按第 ...

  9. ES6 学习笔记(二)解构赋值

    一.数组的解构赋值 1.基本用法 ES6允许按照一定模式从数组和对象中提取值,然后对变量进行赋值,该操作即为解构 如: let [a,b,c]=[1,2,3]; console.log(a,b,c) ...

  10. 扫雷(哈希+bfs)

    扫雷 题目描述: 小明最近迷上了一款名为<扫雷>的游戏. 其中有一个关卡的任务如下: 在一个二维平面上放置着 n 个炸雷,第 i 个炸雷 (x\(_i\),y\(_i\),r\(_i\)) ...