[LNOI2022]盒
\(LNOI2022\)盒
由于是加的形式,那么可以套路的拆贡献,枚举每条边的贡献就好了
\(40pts\)
//比较显然的事情
//首先确定了一个B数组之后
//最小的移动应该是
//设左右两侧比原先值多的为Max
//少的为Min
///我们考虑每个点只计算向一侧的贡献
//我们的答案是(Max-Limx)*val+(Limn-Min)*val
//n^2的dp很好给出
//dp[i][j]表示前i个选了j个的答案
//不需要貌似,只需要枚举这个点选的,和左边选的,还有右边选的就好了
//枚举这个点选的,枚举左边,复杂度n^2
#include<bits/stdc++.h>
#define int long long
#define MAXN 20005
using namespace std;
const int mod=998244353;
int n,w[MAXN],a[MAXN],Sum[MAXN];
int fac[MAXN+5],inv[MAXN+5];
void Init()
{
fac[0]=inv[0]=1;
fac[1]=inv[1]=1;
for(int i=2;i<=MAXN;i++)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
for(int i=1;i<=MAXN;i++)
{
inv[i]=(inv[i]*inv[i-1])%mod;
}
}
int C(int n,int m)
{
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
void sol()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
Sum[i]=Sum[i-1]+a[i];
}
for(int i=1;i<n;i++)
{
scanf("%lld",&w[i]);
}
int res=0;
for(int i=1;i<n;i++)
{
for(int bed=0;bed<=Sum[n];bed++)
{
int pre=Sum[n]-bed;
{
res+=(abs(Sum[i]-pre))*w[i]%mod*C(pre+i-1,i-1)%mod*C(bed+(n-i)-1,n-i-1)%mod;
res%=mod;
}
}
}
cout<<res<<"\n";
}
int T;
signed main()
{
scanf("%lld",&T);
Init();
while(T--) sol();
}
答案为
\\
\sum_iw[i](2\times\sum_{j=0}^{s[i]}(s_i-j)\binom{j+i-1}{i-1}\binom{S-j+n-i-1}{n-i-1}+\sum_{j=0}^{S}(j-s_i)\binom{j+i-1}{i-1}\binom{S-j+n-i-1}{n-i-1})
\]
考虑后面那个式子
\\
\sum_{j=0}^S j\binom{j+i-1}{i-1}\binom{S-j+n-i-1}{n-i-1}-\sum_{j=0}^S s_i\binom{j+i-1}{i-1}\binom{S-j+n-i-1}{n-i-1}
\\
\sum_{j=0}^S j\binom{j+i-1}{j}\binom{S-j+n-i-1}{n-i-1}-\sum_{j=0}^S s_i\binom{j+i-1}{j}\binom{S-j+n-i-1}{n-i-1}
\\
i\sum_{j=0}^S\binom{j+i-1}{i}\binom{S-j+n-i-1}{n-i-1}-\sum_{j=0}^S s_i\binom{j+i-1}{j}\binom{S-j+n-i-1}{n-i-1}
\\
\]
前半部分\(j\leftarrow j-1\)
\\
i\sum_{j=0}^{S-1}\binom{j+i}{j}\binom{S-j+n-i-2}{S-j-1}-\sum_{j=0}^S s_i\binom{j+i-1}{j}\binom{S-j+n-i-1}{n-i-1}
\]
\]
替换原式
\\
i\binom{n+S-1}{n}-s_i\binom{n+S-1}{S}
\]
那么对于前一个式子,我们变化的只是枚举上界,考虑组合意义变化为,在第 \(i\) 列的纵坐标不能超过 \(s[i]\)
等价于在走到某一行\(/\)列,对应的列\(/\)行不能超过某个数
在第 \(p\) 列 \(y\) 不超过第 \(q\) 行的方案数,等价于第 \(q\) 行到第 \(q+1\) 行,\(x\) 至少为 \(p+1\) 的方案数
\]
我们可以\(O(1)\)的更新值的变化,从而做到线性
#include<bits/stdc++.h>
#define int long long
#define MAXN 3000005
using namespace std;
const int N=3e6+100;
const int INF=LLONG_MAX,mod=998244353;
int my_pow(int a,int b)
{
int res=1;
while(b)
{
if(b&1) res=(res*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return res;
}
int n,fac[MAXN+5],inv[MAXN+5],Sum[MAXN],w[MAXN],S;
void Init()
{
fac[0]=inv[0]=1;
fac[1]=inv[1]=1;
for(int i=2;i<=MAXN;i++)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
for(int i=1;i<=MAXN;i++)
{
inv[i]=(inv[i-1]*inv[i])%mod;
}
}
int C(int n,int m)
{
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
struct Solve
{
int n,m,p,q,res;
void Init(int N,int M)
{
n=N;m=M;p=0;q=0;
res=C(n+m-1,m);
return;
}
int move(int P,int Q)
{
while(q<Q)
{
++q;
res+=C(q+p,q)*C(n+m-q-p-1,m-q)%mod;
res%=mod;
}
while(p<P)
{
++p;
res-=C(p+q,p)*C(n+m-p-q-1,n-p)%mod;
res=(res%mod+mod)%mod;
}
return res;
}
}res1,res2;
void sol()
{
cin>>n;
for(int i=1,a;i<=n;i++)
{
cin>>a;
Sum[i]=Sum[i-1]+a;
}
for(int i=1;i<n;i++) cin>>w[i];
S=Sum[n];
res1.Init(n-1,S);
res2.Init(n,S-1);
int Ans=0;
for(int i=1;i<n;i++)
{
int res=0;
res=(res+i*C(n+S-1,n))%mod;
res=(res+mod-Sum[i]*C(n+S-1,S)%mod)%mod;
if(Sum[i]) res=(res+2*Sum[i]*res1.move(i-1,Sum[i]))%mod;
if(Sum[i]) res=(res+mod-2*i*res2.move(i,Sum[i]-1)%mod)%mod;
Ans=(Ans+res*w[i])%mod;
}
printf("%lld\n",Ans);
}
int T;
signed main()
{
Init();
cin>>T;
while(T--) sol();
return 0;
}
[LNOI2022]盒的更多相关文章
- css_02之盒模型、渐变
1.框模型:盒模型,①对象实际宽度=左右外边距+左右边框+左右内边距 + width:②对象实际高度=上下外边距+上下边框+上下内边距 + height: 2.外边距:margin:取值:①top(上 ...
- css3盒模型
css2.1盒模型: 当你定义盒子的宽高后:如果添加padding和border值后盒子的宽高会被撑大 盒子的高度=定义的高度+(padding-top + padding-bottom)+(bord ...
- CSS3伸缩盒Flexible Box
这是一种全新的布局,在移动端非常实用,IE对此布局的相关的兼容不是很好,Firefox.Chrome.Safrai等需要加浏览器前缀. 先说说这种布局的特点: 1)移动端由于屏幕宽度都不一样,在布局的 ...
- 前端开发:css基础知识之盒模型以及浮动布局。
前端开发:css基础知识之盒模型以及浮动布局 前言 楼主的蛮多朋友最近都在学习html5,他们都会问到同一个问题 浮动是什么东西? 为什么这个浮动没有效果? 这个问题楼主已经回答了n遍.今天则是把 ...
- 沙盒解决方案解决SharePoint 2013 以其他身份登陆的问题
众所周知,SharePoint 2013没有像SharePoint 2010那样有一个叫"以其他身份登录"的菜单项. 当然解决方案也很多,比如你可以直接修改Welcome.ascx ...
- SharePoint 2013 沙盒解决方案不能激活(激活按钮不可用)
把沙盒解决方案上传到目标站点的"解决方案"库中,发现"激活"按钮是灰掉的,不可用. 首先,我想到的是权限不足,所以 "以管理员身份"启动IE ...
- Oracle Sales Cloud:管理沙盒(定制化)小细节2——使用对象触发器更新数字字段
在上一篇 "管理沙盒(定制化)小细节1" 的随笔中,我们使用公式法在 "业务机会" 对象(单头)上建立了 "利润合计" 字段,并将它等于 & ...
- Oracle Sales Cloud:管理沙盒(定制化)小细节1——利用公式创建字段并显示在前端页面
Oracle Sales Cloud(Oracle 销售云)是一套基于Oracle云端的CRM管理系统.由于 Oracle 销售云是基于 Oracle 云环境的,它与传统的管理系统相比,显著特点之一便 ...
- 沙盒SandBox
每个App都有自己的沙盒,也就是一个存储空间.App之间没有权限访问对方的沙盒资源.沙盒的目录下有三个文件夹:Documents.Library.temp 目录结构 Documents:用于存储用户数 ...
随机推荐
- 监控工具:nmon
软件介绍 分析工具 分析 AIX 和 Linux 性能的免费工具, 这个高效的工具可以工作于任何哑屏幕.telnet 会话.甚至拨号线路.另外,它并不会消耗大量的 CPU 周期,通常低于百分之二. ...
- 「Java分享客栈」随时用随时翻:微服务链路追踪之zipkin搭建
前言 微服务治理方案中,链路追踪是必修课,SpringCloud的组件其实使用很简单,生产环境中真正令人头疼的往往是软件维护,接口在微服务间的调用究竟哪个环节出现了问题,哪个环节耗时较长,这都是项目上 ...
- Android7.1.2 源码编译并烧写Nexus5X
1.环境配置 Ubuntu18.04 openJDK1.8 Python2.7 2.更新Ubuntu镜像源 编辑/etc/apt/source.list,替换为以下内容 deb http://mirr ...
- TENSEAL: A LIBRARY FOR ENCRYPTED TENSOR OP- ERATIONS USING HOMOMORPHIC ENCRYPTION 解读
本文记录阅读该paper的笔记,这篇论文是TenSeal库的原理介绍. 摘要 机器学习算法已经取得了显著的效果,并被广泛应用于各个领域.这些算法通常依赖于敏感和私有数据,如医疗和财务记录.因此,进一步 ...
- R-CNN学习笔记
R-CNN学习笔记 step1:总览 步骤: 输入图片 先挑选大约2000个感兴趣区域(ROI)使用select search方法:[在输入的图像中寻找blobby regions(可能相同纹理,颜色 ...
- flex布局的总结
1.开启了flex布局的元素叫: flex container 2.里面的直接子元素叫:flex items(默认情况下,所有item都会在一行显示) 3.display属性由flex和inline- ...
- Solon 1.8.0 发布,云原生微服务开发框架
相对于 Spring Boot 和 Spring Cloud 的项目 启动快 5 - 10 倍 qps 高 2- 3 倍 运行时内存节省 1/3 ~ 1/2 打包可以缩小到 1/2 ~ 1/10(比如 ...
- Java ES 实现or查询
es mapping里有三个字段: A:Integer B:Integer C:TEXT 现在想实现一个查询,来检索 ( (A =1 and B=2) or (c like "test ...
- 区分 python 爬虫或者是写自动化脚本时遇到的 content与text的作用
通常在使用过程中或许我们能够轻而易举的会使用requsts模块中的content 与 text ,从print结果来看根本看不出任何区别: 总结精髓,text 返回的是unicode 型的数据,一般是 ...
- 阶段性总结 GDOI 2022 PJ
阶段性总结 GDOI 2022 PJ 比赛经过 Day ? ~ Day -1 半停课集训,补了很多东西,但是之前漏得太多了,结果是还有很多题没改 打了若干场 AtCoder ,承认自己思维的不足,训练 ...