从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练
概述
本教程假定你已经对于 PyToch 训练一个简单模型有一定的基础理解。本教程将展示使用 3 种封装层级不同的方法调用 DDP (DistributedDataParallel) 进程,在多个 GPU 上训练同一个模型:
- 使用
pytorch.distributed
模块的原生 PyTorch DDP 模块 - 使用 Accelerate 对
pytorch.distributed
的轻量封装,确保程序可以在不修改代码或者少量修改代码的情况下在单个 GPU 或 TPU 下正常运行 - 使用 Transformer 的高级 Trainer API ,该 API 抽象封装了所有代码模板并且支持不同设备和分布式场景。
什么是分布式训练,为什么它很重要?
下面是一些非常基础的 PyTorch 训练代码,它基于 Pytorch 官方在 MNIST 上创建和训练模型的示例。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
class BasicNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
self.act = F.relu
def forward(self, x):
x = self.act(self.conv1(x))
x = self.act(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.act(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
我们定义训练设备 (cuda
):
device = "cuda"
构建一些基本的 PyTorch DataLoaders
:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
])
train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)
把模型放入 CUDA 设备:
model = BasicNet().to(device)
构建 PyTorch optimizer
(优化器)
optimizer = optim.AdamW(model.parameters(), lr=1e-3)
最终创建一个简单的训练和评估循环,训练循环会使用全部训练数据集进行训练,评估循环会计算训练后模型在测试数据集上的准确度:
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')
通常从这里开始,就可以将所有的代码放入 Python 脚本或在 Jupyter Notebook 上运行它。
然而,只执行 python myscript.py
只会使用单个 GPU 运行脚本。如果有多个 GPU 资源可用,您将如何让这个脚本在两个 GPU 或多台机器上运行,通过分布式训练提高训练速度?这是 torch.distributed
发挥作用的地方。
PyTorch 分布式数据并行
顾名思义,torch.distributed
旨在配置分布式训练。你可以使用它配置多个节点进行训练,例如:多机器下的单个 GPU,或者单台机器下的多个 GPU,或者两者的任意组合。
为了将上述代码转换为分布式训练,必须首先定义一些设置配置,具体细节请参阅 DDP 使用教程
首先必须声明 setup
和 cleanup
函数。这将创建一个进程组,并且所有计算进程都可以通过这个进程组通信。
注意:在本教程的这一部分中,假定这些代码是在 Python 脚本文件中启动。稍后将讨论使用 Accelerate 的启动器,就不必声明
setup
和cleanup
函数了
import os
import torch.distributed as dist
def setup(rank, world_size):
"Sets up the process group and configuration for PyTorch Distributed Data Parallelism"
os.environ["MASTER_ADDR"] = 'localhost'
os.environ["MASTER_PORT"] = "12355"
# Initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
"Cleans up the distributed environment"
dist.destroy_process_group()
最后一个疑问是,我怎样把我的数据和模型发送到另一个 GPU 上?
这正是 DistributedDataParallel
模块发挥作用的地方, 它将您的模型复制到每个 GPU 上 ,并且当 loss.backward()
被调用进行反向传播的时候,所有这些模型副本的梯度将被同步地平均/下降 (reduce)。这确保每个设备在执行优化器步骤后具有相同的权重。
下面是我们的训练设置示例,我们使用了 DistributedDataParallel
重构了训练函数:
注意:此处的 rank 是当前 GPU 与所有其他可用 GPU 相比的总体 rank,这意味着它们的 rank 为
0 -> n-1
from torch.nn.parallel import DistributedDataParallel as DDP
def train(model, rank, world_size):
setup(rank, world_size)
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3)
# Train for one epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
cleanup()
在上述的代码中需要为每个副本设备上的模型 (因此在这里是ddp_model
的参数而不是 model
的参数) 声明优化器,以便正确计算每个副本设备上的梯度。
最后,要运行脚本,PyTorch 有一个方便的 torchrun
命令行模块可以提供帮助。只需传入它应该使用的节点数以及要运行的脚本即可:
torchrun --nproc_per_nodes=2 --nnodes=1 example_script.py
上面的代码可以在在一台机器上的两个 GPU 上运行训练脚本,这是使用 PyTorch 只进行分布式训练的情况 (不可以在单机单卡上运行)。
现在让我们谈谈 Accelerate,一个旨在使并行化更加无缝并有助于一些最佳实践的库。
Accelerate
Accelerate 是一个库,旨在无需大幅修改代码的情况下完成并行化。除此之外, Accelerate 附带的数据 pipeline
还可以提高代码的性能。
首先,让我们将刚刚执行的所有上述代码封装到一个函数中,以帮助我们直观地看到差异:
def train_ddp(rank, world_size):
setup(rank, world_size)
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
])
train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)
# Build model
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
# Build optimizer
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3)
# Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')
接下来让我们谈谈 Accelerate 如何便利地实现并行化的。上面的代码有几个问题:
- 该代码有点低效,因为每个设备都会创建一个
dataloader
。 - 这些代码只能运行在多 GPU 下,当想让这个代码运行在单个 GPU 或 TPU 时,还需要额外进行一些修改。
Accelerate 通过 Accelerator
类解决上述问题。通过它,不论是单节点还是多节点,除了三行代码外,其余代码几乎保持不变,如下所示:
def train_ddp_accelerate():
accelerator = Accelerator()
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
])
train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)
# Build model
model = BasicModel()
# Build optimizer
optimizer = optim.AdamW(model.parameters(), lr=1e-3)
# Send everything through `accelerator.prepare`
train_loader, test_loader, model, optimizer = accelerator.prepare(
train_loader, test_loader, model, optimizer
)
# Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
output = model(data)
loss = F.nll_loss(output, target)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')
借助 Accelerator
对象,您的 PyTorch 训练循环现在已配置为可以在任何分布式情况运行。使用 Accelerator
改造后的代码仍然可以通过 torchrun CLI
或通过 Accelerate 自己的 CLI 界面启动(启动你的 Accelerate 脚本)。
因此,现在可以尽可能保持 PyTorch 原生代码不变的前提下,使用 Accelerate 执行分布式训练。
早些时候有人提到 Accelerate 还可以使 DataLoaders
更高效。这是通过自定义采样器实现的,它可以在训练期间自动将部分批次发送到不同的设备,从而允许每个设备只需要储存数据的一部分,而不是一次将数据复制四份存入内存,具体取决于配置。因此,内存总量中只有原始数据集的一个完整副本。该数据集会拆分后分配到各个训练节点上,从而允许在单个实例上训练更大的数据集,而不会使内存爆炸
使用 notebook_launcher
之前提到您可以直接从 Jupyter Notebook 运行分布式代码。这来自 Accelerate 的 notebook_launcher
模块,它可以在 Jupyter Notebook 内部的代码启动多 GPU 训练。
使用它就像导入 launcher
一样简单:
from accelerate import notebook_launcher
接着传递我们之前声明的训练函数、要传递的任何参数以及要使用的进程数(例如 TPU 上的 8 个,或两个 GPU 上的 2 个)。下面两个训练函数都可以运行,但请注意,启动单次启动后,实例需要重新启动才能产生另一个:
notebook_launcher(train_ddp, args=(), num_processes=2)
或者:
notebook_launcher(train_accelerate_ddp, args=(), num_processes=2)
使用 Trainer
终于我们来到了最高级的 API——Hugging Face Trainer.
它涵盖了尽可能多的训练类型,同时仍然能够在分布式系统上进行训练,用户根本不需要做任何事情。
首先我们需要导入 Trainer:
from transformers import Trainer
然后我们定义一些 TrainingArguments
来控制所有常用的超参数。 Trainer 需要的训练数据是字典类型的,因此需要制作自定义整理功能。
最后,我们将训练器子类化并编写我们自己的 compute_loss
.
之后,这段代码也可以分布式运行,而无需修改任何训练代码!
from transformers import Trainer, TrainingArguments
model = BasicNet()
training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
)
def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels}
class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss
trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
)
trainer.train()
***** Running training *****
Num examples = 60000
Num Epochs = 1
Instantaneous batch size per device = 64
Total train batch size (w. parallel, distributed & accumulation) = 64
Gradient Accumulation steps = 1
Total optimization steps = 938
Epoch | 训练损失 | 验证损失 |
---|---|---|
1 | 0.875700 | 0.282633 |
与上面的 notebook_launcher
示例类似,也可以将这个过程封装成一个训练函数:
def train_trainer_ddp():
model = BasicNet()
training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
)
def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels}
class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss
trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
)
trainer.train()
notebook_launcher(train_trainer_ddp, args=(), num_processes=2)
相关资源
- 要了解有关 PyTorch 分布式数据并行性的更多信息,请查看:
https://pytorch.org/docs/stable/distributed.html - 要了解有关 Accelerate 的更多信息,请查看:
https://hf.co/docs/accelerate - 要了解有关 Transformer 的更多信息,请查看:
https://hf.co/docs/transformers
原文作者:Zachary Mueller
译者:innovation64 (李洋)
审校:yaoqi (胡耀淇)
排版:zhongdongy (阿东)
从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练的更多相关文章
- Pytorch使用分布式训练,单机多卡
pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数 ...
- 云原生的弹性 AI 训练系列之二:PyTorch 1.9.0 弹性分布式训练的设计与实现
背景 机器学习工作负载与传统的工作负载相比,一个比较显著的特点是对 GPU 的需求旺盛.在之前的文章中介绍过(https://mp.weixin.qq.com/s/Nasm-cXLtJObjLwLQH ...
- Pytorch分布式训练
用单机单卡训练模型的时代已经过去,单机多卡已经成为主流配置.如何最大化发挥多卡的作用呢?本文介绍Pytorch中的DistributedDataParallel方法. 1. DataParallel ...
- [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)
Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...
- 【xxl-job】轻松实现分布式定时任务demo实例
[项目描述]前段时间专门独立了一个spring boot服务,用于做和第三方erp系统的对接工作.此服务的第一个需求工作就是可以通过不同的规则,设置不同的定时任务,从而获取erp系统的商品数据.所以, ...
- Pytorch修改ResNet模型全连接层进行直接训练
之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层 ...
- [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架
[源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0 ...
- Pytorch的模型加速方法:Dataparallel (DP) 和 DataparallelDistributedparallel (DDP)
Dataparallel 和 DataparallelDistributed 的区别 一.Dataparallel(DP) 1.1 Dartaparallel 的使用方式 Dataparallel 的 ...
- PyTorch大更新!谷歌出手帮助开发,正式支持TensorBoard | 附5大开源项目
大家又少了一个用TensorFlow的理由. 在一年一度的开发者大会F8上,Facebook放出PyTorch的1.1版本,直指TensorFlow"腹地". 不仅宣布支持Tens ...
- [源码解析] PyTorch 分布式(1)------历史和概述
[源码解析] PyTorch 分布式(1)------历史和概述 目录 [源码解析] PyTorch 分布式(1)------历史和概述 0x00 摘要 0x01 PyTorch分布式的历史 1.1 ...
随机推荐
- 安卓APP和小程序渗透测试技巧总结
安卓APP和小程序渗透测试技巧总结 免责声明: 安卓7以上抓取https流量包 证书信任 首先安装OpenSSL,此步骤不再赘述,可以参考百度. 然后安装模拟器(我使用的是夜神模拟器). 导出需要的证 ...
- 2022春每日一题:Day 8
题目:[HNOI2003]激光炸弹 二维前缀和,扫大小为m*m的矩形,取最大即可. 代码: #include <cstdio> #include <cstdlib> #incl ...
- TreeUtils工具类一行代码实现列表转树 实战Java8 三级菜单 三级分类 附视频
一.序言 在日常一线开发过程中,总有列表转树的需求,几乎是项目的标配,比方说做多级菜单.多级目录.多级分类等,有没有一种通用且跨项目的解决方式呢?帮助广大技术朋友给业务瘦身,提高开发效率. 本文将基于 ...
- 【云原生 · Kubernetes】kubernetes v1.23.3 二进制部署(一)
kubernetes v1.23.3 二进制部署 1. 组件版本和配置策略 1.1 主要组件版本 1.2 主要配置策略 2. 初始化系统和全局变量 2.1 集群规划 2.2 kubelet cri-o ...
- day01-计算机的本质
计算机的本质 计算机又称为"电脑": 通电的大脑 意味着我们人类希望计算机通电之后可以跟人脑一样思考问题.解决问题 计算机存储数据的本质 计算机是基于电工作,而电信号只有高低电平两 ...
- vue脚手架安装及依赖
一.安装Vue Cil (脚手架) 需要先安装node.js,这是node官网地址: https://nodejs.org/en/download/ ,node有两种版本一种是稳定版一种开发版 安装完 ...
- dp状态设计
迎接仪式 题目描述 LHX 教主要来 X 市指导 OI 学习工作了.为了迎接教主,在一条道路旁,一群"Orz 教主 er"穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一 ...
- Velocity模板引擎的的使用示例(入门级)
简单说下这个引擎的两个分支(虽然语言不同调用方法大同小异): 1.Java平台下的:org.apache.velocity 2..Net平台下的:NVelocity 注:本文章不涉及到后端只说模板的使 ...
- cv2.imread opencv读取不到图片问题
解决办法 cv2.imread 路径中包含中文,改为英文 其他 这个问题解决了很久,都属于库的问题
- NavigationDuplicated Navigating to current location (“/XXX”) is not allowed
导航不允许导航到当前位置https://stackoverflow.com/questions/57837758/navigationduplicated-navigating-to-current- ...