火柴拼正方形

https://leetcode.cn/problems/matchsticks-to-square/

你将得到一个整数数组 matchsticks ,其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍 拼成一个正方形。你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次 。

如果你能使这个正方形,则返回 true ,否则返回 false 。

示例 1:

输入: matchsticks = [1,1,2,2,2]

输出: true

解释: 能拼成一个边长为2的正方形,每边两根火柴

示例 2:

输入: matchsticks = [3,3,3,3,4]

输出: false

解释: 不能用所有火柴拼成一个正方形。

提示:

1 <= matchsticks.length <= 15

1 <= matchsticks[i] <= 108

思路

首先,我们需要拼的是一个正方形,那么四边都是相等的,由此我们可以先通过计算火柴数组matchsticks的元素总和(也就是正方形的周长),先判断一下其能不能构成正方形,不能就直接false了

基于此,如果一个火柴数组能够满足构成正方形的基本条件,那再往下讨论

我们可以把正方形的四条边看成四个"边容器"edgeBox

那么问题就变成了:从火柴数组中遍历出值,往edgeBox中放,如果所有的火柴恰好能够放满所有的"边容器",那么该火柴数组就是可以构成正方形的,过程如下:

在代码实现时,我们可以用一个数组来定义edgeBox,这就是将边看做一个"容器"的原因,即vector<int> edgeBox(4);,正方形就4条边,所以数组大小是固定的

剪枝点:此处例子虽然可以正好用最优的遍历次数解决问题,但很多情况下是会浪费很多时间在“尝试不适合的容器”上的,所以为了尽可能的提高性能,可以先把火柴数组从大到小排序

那么怎么实现上述过程呢?用回溯

代码

回溯分析

还记得回溯怎么写吧?和递归一样,也是三部曲

1、确定回溯函数返回值和参数

根据分析,最终需要返回当前遍历边对应的edgeBox是否装满,所以要返回布尔值

输入参数:matchsticks中火柴的下标stickIndexmatchsticks数组;存放4条边的数组edgeBox;正方形的边长edgeLen

class Solution {
private://确定递归函数的参数与返回值
//根据分析,最终需要返回当前遍历边对应的edgeBox是否装满,所以要返回布尔值
//输入参数:stickIndex;matchsticks;edgeBox;edgeLen
bool traversal(vector<int>& matchsticks, int stickIndex, vector<int>& edgeBox, int edgeLen){ }
public:
bool makesquare(vector<int>& matchsticks) { }
};
2、确定终止条件

我们需要通过火柴下标stickIndex来判断递归是否终止,因为本质上我们是用火柴去不断尝试放入edgeBox

如果遍历到最后一根火柴,那么意味着其他火柴都被放到了合适的位置,目前就剩下一个位置给当前的火柴,返回true,结束,此时已经构成了正方形

class Solution {
private://确定递归函数的参数与返回值
//根据分析,最终需要返回当前遍历边对应的edgeBox是否装满,所以要返回布尔值
//输入参数:stickIndex;matchsticks;edgeBox;edgeLen
bool traversal(vector<int>& matchsticks, int stickIndex, vector<int>& edgeBox, int edgeLen){
//确定终止条件
//如果遍历到最后一根火柴,就返回true,结束
if(stickIndex == matchsticks.size()) return true;
}
public:
bool makesquare(vector<int>& matchsticks) { }
};
3、处理单层逻辑

这部分需要不断遍历火柴累加至edgeBox数组的对应位置,并判断当前edgeBox是否"装满"

没装满就继续触发递归(此时还不会运行到返回true的位置),让下一个火柴放入该edgeBox,直到放满或者当前火柴无法放入

不管上述哪种情况,都会触发回溯,将当前火柴拿到edgeBox数组的下一个位置(即下一条边)继续尝试放入

若edgeBox数组遍历结束都没有返回true,那就返回false,说明当前火柴数组不能组成正方形

class Solution {
private://确定递归函数的参数与返回值
//根据分析,最终需要返回当前遍历边对应的edgeBox是否装满,所以要返回布尔值
//输入参数:stickIndex;matchsticks;edgeBox;edgeLen
bool traversal(vector<int>& matchsticks, int stickIndex, vector<int>& edgeBox, int edgeLen){
//确定终止条件
//如果遍历到最后一根火柴,就返回true,结束
if(stickIndex == matchsticks.size()) return true; //确定单层处理逻辑
//使用火柴遍历edgeBox
for(int i = 0; i < edgeBox.size(); ++i){//遍历edgeBox数组
edgeBox[i] += matchsticks[stickIndex];//试着把火柴放入当前edgeBox
//做两个判断:1、当前edgeBox是否已经放满;2、当前edgeBox是否能放目前遍历到的火柴
//没放满(小于等于)就可以继续放
if(edgeBox[i] <= edgeLen && traversal(matchsticks, stickIndex + 1, edgeBox, edgeLen)) return true;
edgeBox[i] -= matchsticks[stickIndex];//回溯,如果不能放就把放入的挪走
}
return false;
}
public:
bool makesquare(vector<int>& matchsticks) { }
};
完整代码

在主函数部分,需要计算火柴数组元素和(正方形周长),判断周长是否满足条件

然后进行剪枝操作:对火柴数组进行排序,减少递归次数

步骤:

1、计算火柴数组元素和(正方形周长)

2、判断周长是否满足条件

3、对火柴数组进行排序

4、定义edgeBox数组,调用递归函数

class Solution {
private://确定递归函数的参数与返回值
bool traversal(vector<int>& matchsticks, int stickIndex, vector<int>& edgeBox, int edgeLen){
//确定终止条件
//如果遍历到最后一根火柴,就返回true,结束
if(stickIndex == matchsticks.size()) return true; //确定单层处理逻辑
//使用火柴遍历edgeBox
for(int i = 0; i < edgeBox.size(); ++i){
edgeBox[i] += matchsticks[stickIndex];//试着把火柴放入当前edgeBox
//做两个判断:1、当前edgeBox是否已经放满;2、当前edgeBox是否能放目前遍历到的火柴
//没放满(小于等于)就可以继续放
if(edgeBox[i] <= edgeLen && traversal(matchsticks, stickIndex + 1, edgeBox, edgeLen)) return true;
edgeBox[i] -= matchsticks[stickIndex];//回溯,如果不能放就把放入的挪走
}
return false;
}
public:
bool makesquare(vector<int>& matchsticks) {
//计算火柴数组元素和(正方形周长)
int matchstickSum = 0;
for(auto stick : matchsticks) matchstickSum += stick; //判断周长是否满足条件
if(matchstickSum % 4 != 0) return false; //计算正方形边长
// int edgeLen = matchstickSum / 4; //对火柴数组进行排序,减少递归次数
sort(matchsticks.begin(), matchsticks.end(), greater<int>());// //定义一个数组用于表示正方形的四条边
vector<int> edgeBox(4);//数组大小为4 //调用递归函数
return traversal(matchsticks, 0, edgeBox, matchstickSum / 4);
}
};
题外话:sort内置排序规则

greater表示内置类型从大到小排序,less表示内置类型从小到大排序。

sort(matchsticks.begin(), matchsticks.end(), greater<int>());//从大到小
sort(matchsticks.begin(), matchsticks.end(), less<int>());//从小到大

剪枝

使用 划分k个相等子集 中介绍的剪枝方法可以对本题代码进行优化

优化版代码
class Solution {
private://确定递归函数的参数与返回值
bool traversal(vector<int>& matchsticks, int stickIndex, vector<int>& edgeBox, int edgeLen){
//确定终止条件
//如果遍历到最后一根火柴,就返回true,结束
if(stickIndex == matchsticks.size()) return true; //确定单层处理逻辑
//使用火柴遍历edgeBox
for(int i = 0; i < edgeBox.size(); ++i){
//剪枝优化
if(i > 0 && edgeBox[i] == edgeBox[i - 1]) continue; if(edgeBox[i] + matchsticks[stickIndex] > edgeLen) continue; edgeBox[i] += matchsticks[stickIndex];//试着把火柴放入当前edgeBox
//做两个判断:1、当前edgeBox是否已经放满;2、当前edgeBox是否能放目前遍历到的火柴
//没放满(小于等于)就可以继续放
if(edgeBox[i] <= edgeLen && traversal(matchsticks, stickIndex + 1, edgeBox, edgeLen)) return true;
edgeBox[i] -= matchsticks[stickIndex];//回溯,如果不能放就把放入的挪走
}
return false;
}
public:
bool makesquare(vector<int>& matchsticks) {
//计算火柴数组元素和(正方形周长)
int matchstickSum = 0;
for(auto stick : matchsticks) matchstickSum += stick; //判断周长是否满足条件
if(matchstickSum % 4 != 0) return false; //计算正方形边长
// int edgeLen = matchstickSum / 4; //对火柴数组进行排序,减少递归次数
sort(matchsticks.begin(), matchsticks.end(), greater<int>());// //定义一个数组用于表示正方形的四条边
vector<int> edgeBox(4);//数组大小为4 //调用递归函数
return traversal(matchsticks, 0, edgeBox, matchstickSum / 4);
}
};

划分k个相等子集

https://leetcode.cn/problems/partition-to-k-equal-sum-subsets/

给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。

示例 1:

输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4

输出: True

说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。

示例 2:

输入: nums = [1,2,3,4], k = 3

输出: false

提示:

1 <= k <= len(nums) <= 16

0 < nums[i] < 10000

每个元素的频率在 [1,4] 范围内

思路

本题基本上就是 火柴拼正方形 的抽象版,不同的是,火柴那题本质是求 划分4个相等子集 ,而本题将需要划分的子集个数拓展到了k个

好消息是,这两题的思路基本可以复用;坏消息是,采用一般的递归回溯方式解本题会超时

因此,需要引入一些剪枝操作来降低处理成本

所以,这里会侧重讨论剪枝的细节

基本思路再过一遍:

​ 1、先求出待划分数组的元素总和,除以k,判断是否能够继续进行划分

​ 2、若数组元素总和能够均分为k个子集,那么就遍历待划分数组元素,不断尝试放入子集数组中(过程使用递归回溯实现)

​ 3、当待划分数组元素遍历结束,划分完成

代码

回溯分析
1、确定回溯函数的参数与返回值

和火柴那题一样,返回值是布尔,参数是:待划分数组nums、待划分数组遍历下标numsIndex,子集数组subBox,子集长度subLen

class Solution {
private://确定递归函数参数和返回值
bool traversal(vector<int>& nums, int numsIndex, vector<int>& subBox, int subLen){ }
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
}
};
2、确定终止条件

终止条件也是一样的:当待划分数组遍历下标numsIndex遍历至最后一个元素,就结束。

class Solution {
private://确定递归函数参数和返回值
bool traversal(vector<int>& nums, int numsIndex, vector<int>& subBox, int subLen){
//确定终止条件
if(numsIndex == nums.size()) return true; }
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
}
};
3、确定单层处理逻辑

这里是重点了,虽然逻辑是可以直接套用火柴那题的,但是需要做一定的剪枝才能ac

剪枝点1:如果当前subBox内的值与上一个subBox内的值相同,则可以跳过

什么意思呢?

subBox数组记录的是什么?是当前某个子集中放了多少元素,总和为多少。

剪枝点会在以下情况被触发

​ 一个待划分数组的遍历值经过尝试无法放入当前subBox位置(例如subBox[2]),正在尝试subBox中的下一个位置(例如subBox[3])

如果下一个位置(例如subBox[3])所记录的元素总和等于上一个位置(例如subBox[2])的,那么其实该元素还是放不进,因此就没有必要再去执行下面 "尝试放入数组" 的操作了,可以直接去试subBox的下一个位置,从而提高了性能

除此之外,该剪枝点还将另外一种情况也给优化了,即:第一个待划分数组的遍历值放入subBox时,由于subBox元素均为0,所以放哪个都行,不用再去选择了,直接令其放在第一个,这样又节约了一些开销

剪枝点2:提前计算一下放入当前待划分数组遍历值后,subBox对应位置的大小,如果超过我们需要的子集大小(subLen),那也可以直接跳过,不再进行后续的递归判断

class Solution {
private://确定递归函数参数和返回值
bool traversal(vector<int>& nums, int numsIndex, vector<int>& subBox, int subLen){
//确定终止条件
if(numsIndex == nums.size()) return true; //确定单层处理逻辑
//用nums中的值去遍历子集数组,尝试放入
for(int i = 0; i < subBox.size(); ++i){
//剪枝点1
if(i > 0 && subBox[i] == subBox[i - 1]) continue; //剪枝点2
if(subBox[i] + nums[numsIndex] > subLen) continue; subBox[i] += nums[numsIndex];
if(subBox[i] <= subLen && traversal(nums, numsIndex + 1, subBox, subLen)) return true;
subBox[i] -= nums[numsIndex];
}
return false;
}
public:
bool canPartitionKSubsets(vector<int>& nums, int k) { }
};

本质上,此处的剪枝操作都是在递归判断之前,人为的筛选掉一些情况,减少触发递归的次数,进而提升性能

完整代码

主函数部分的逻辑与火柴那题完全一致,就不多说了

class Solution {
private://确定递归函数参数和返回值
bool traversal(vector<int>& nums, int numsIndex, vector<int>& subBox, int subLen){
//确定终止条件
if(numsIndex == nums.size()) return true; //确定单层处理逻辑
//用nums中的值去遍历子集数组,尝试放入
for(int i = 0; i < subBox.size(); ++i){
//剪枝点1:
if(i > 0 && subBox[i] == subBox[i - 1]) continue; //剪枝点2
if(subBox[i] + nums[numsIndex] > subLen) continue; subBox[i] += nums[numsIndex];//尝试放入待划分数组的遍历值
if(subBox[i] <= subLen && traversal(nums, numsIndex + 1, subBox, subLen)) return true;
subBox[i] -= nums[numsIndex];//不满足条件就不能放进来,因此要回溯
}
return false;
}
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
//计算整数数组nums的元素和
int numSum = 0;
for(auto num : nums) numSum += num; if(numSum % k != 0) return false; int subLen = numSum / k; //把整数数组从大到小排序
sort(nums.begin(), nums.end(), greater<int>()); //创建子集数组
vector<int> subBox(k); return traversal(nums, 0, subBox, subLen); }
};

公平发饼干

https://leetcode.cn/problems/fair-distribution-of-cookies/

给你一个整数数组 cookies ,其中 cookies[i] 表示在第 i 个零食包中的饼干数量。另给你一个整数 k 表示等待分发零食包的孩子数量,所有 零食包都需要分发。在同一个零食包中的所有饼干都必须分发给同一个孩子,不能分开。

分发的 不公平程度 定义为单个孩子在分发过程中能够获得饼干的最大总数。

返回所有分发的最小不公平程度。

示例 1:

输入:cookies = [8,15,10,20,8], k = 2

输出:31

解释:一种最优方案是 [8,15,8] 和 [10,20] 。

  • 第 1 个孩子分到 [8,15,8] ,总计 8 + 15 + 8 = 31 块饼干。
  • 第 2 个孩子分到 [10,20] ,总计 10 + 20 = 30 块饼干。

    分发的不公平程度为 max(31,30) = 31 。

    可以证明不存在不公平程度小于 31 的分发方案。

示例 2:

输入:cookies = [6,1,3,2,2,4,1,2], k = 3

输出:7

解释:一种最优方案是 [6,1]、[3,2,2] 和 [4,1,2] 。

  • 第 1 个孩子分到 [6,1] ,总计 6 + 1 = 7 块饼干。
  • 第 2 个孩子分到 [3,2,2] ,总计 3 + 2 + 2 = 7 块饼干。
  • 第 3 个孩子分到 [4,1,2] ,总计 4 + 1 + 2 = 7 块饼干。

    分发的不公平程度为 max(7,7,7) = 7 。

    可以证明不存在不公平程度小于 7 的分发方案。

提示:

2 <= cookies.length <= 8

1 <= cookies[i] <= 105

2 <= k <= cookies.length

思路

本题的核心仍是对数组进行划分,不同的是,这里划分之后的结果可以是一些不相等的子集

但是,需要使这些子集之间的差值尽量的小

TBD

【LeetCode回溯算法#extra01】集合划分问题【火柴拼正方形、划分k个相等子集、公平发饼干】的更多相关文章

  1. leetcode 473. 火柴拼正方形(DFS,回溯)

    题目链接 473. 火柴拼正方形 题意 给定一串数,判断这串数字能不能拼接成为正方形 思路 DFS,但是不能每次从从序列开始往下搜索,因为这样无法做到四个边覆盖不同位置的值,比如输入是(5,5,5,5 ...

  2. Leetcode 473.火柴拼正方形

    火柴拼正方形 还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到. 输入为 ...

  3. Leetcode之深度优先搜索(DFS)专题-473. 火柴拼正方形(Matchsticks to Square)

    Leetcode之深度优先搜索(DFS)专题-473. 火柴拼正方形(Matchsticks to Square) 深度优先搜索的解题详细介绍,点击 还记得童话<卖火柴的小女孩>吗?现在, ...

  4. Java实现 LeetCode 473 火柴拼正方形

    473. 火柴拼正方形 还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到 ...

  5. [Swift]LeetCode473. 火柴拼正方形 | Matchsticks to Square

    Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match ...

  6. 473 Matchsticks to Square 火柴拼正方形

    还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到.输入为小女孩拥有火柴的 ...

  7. leetcode回溯算法--基础难度

    都是直接dfs,算是巩固一下 电话号码的字母组合 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任何字母. 思路 一直 ...

  8. LeetCode 回溯法 别人的小结 八皇后 递归

    #include <iostream> #include <algorithm> #include <iterator> #include <vector&g ...

  9. LeetCode刷题191203 --回溯算法

    虽然不是每天都刷,但还是不想改标题,(手动狗头 题目及解法来自于力扣(LeetCode),传送门. 算法(78): 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明: ...

  10. LeetCode通关:连刷十四题,回溯算法完全攻略

    刷题路线:https://github.com/youngyangyang04/leetcode-master 大家好,我是被算法题虐到泪流满面的老三,只能靠发发文章给自己打气! 这一节,我们来看看回 ...

随机推荐

  1. 基于Docker搭建Redis集群(主从集群)

    基于Docker搭建Redis集群(主从集群)   最近陆陆续续有不少园友加我好友咨询 redis 集群搭建的问题,我觉得一定是之前写的这篇 <基于Docker的Redis集群搭建> 文章 ...

  2. vue-设置页面滚动高度不生效问题处理

    首先,我遇到的问题是 无法保留(B)页面滚动的位置(scrollTop ) 无法赋值?! 黄色框是滚动部分(非最外层) 参考:https://www.csdn.net/tags/OtDakg2sOTA ...

  3. egret tween 屏幕震动动画 ts

    let orig = { x: this.x, y: this.y }; var dir = 1; var tox = 0; var toy = 0; var count = 40; // if (n ...

  4. 用JS实现一个简单的购物车小案例

    该案例主要是实现的功能有:添加商品功能,将商品添加到购物车的功能还有将商品删除功能,还有就是移出购物车的功能 该案例实现的难点是将商品添加到购物车列表的时候 数量的增加,当购物车有该商品的时候就进行累 ...

  5. 【jupyter notebook】设置jupyter notebook自动补全功能

    安装插件 pip install jupyter_contrib_nbextensions jupyter contrib nbextension install --user 重启jupyter,在 ...

  6. 备份linux系统日志脚本

    #!/bin/bash#script_name bkup_log.sh#7 0 * * 1 cd /home/tools/;./bkup_log.sh >& /dev/nullproce ...

  7. python 连接蓝牙设备并接收数据

    python 连接蓝牙设备 原始内容 # %% from binascii import hexlify import struct from bluepy.btle import Scanner, ...

  8. Jmeter之post上传文件(jmeter接口测试请求参数上传文件)

    一,上传excel等普通文件 接口测试时有接口文档的话,那就对着文档写,没api文档,就自己抓包看了. 接口文档 抓包查看 步骤一:接口请求切换至文件上传(Files Upload)栏 content ...

  9. Linux完全卸载mysql的方式

    //rpm包安装方式卸载查包名:rpm -qa|grep -i mysql删除命令:rpm -e –nodeps 包名 //yum安装方式下载1.查看已安装的mysql命令:rpm -qa | gre ...

  10. docker 容器版本问题

    LoggerFactory is not a Logback LoggerContext but Logback is on the classpath springboot docker 容器中运行 ...