Trie 树的模板

Trie 树的简介

Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。他的核心思想是空间换时间,空间消耗大但是插入和查询有着很优秀的时间复杂度。

Trie 树的定义

Trie树的键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的所有子孙都有相同的前缀(prefix),从根节点到当前结点的路径上的所有字母组成当前位置的字符串,结点可以保存当前字符串、出现次数、指针数组(指向子树)以及是否是结尾标志等等。

简图

实际上每个节点有一个end属性和一个字典长度的节点数组

Trie 树的实现

LeetCode 208. 实现 Trie (前缀树)

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
  示例: 输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true] 解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
  提示: 1 <= word.length, prefix.length <= 2000
word 和 prefix 仅由小写英文字母组成
insert、search 和 startsWith 调用次数 总计 不超过 3 * 104 次
class Trie {
class TrieNode {
boolean end;
TrieNode[] tns = new TrieNode[26];
}
TrieNode root;
public Trie() {
root = new TrieNode();
} public void insert(String word) {
TrieNode p = root;
for(int i = 0; i < word.length(); i++) {
int u = word.charAt(i) - 'a';
if(p.tns[u] == null) p.tns[u] = new TrieNode();
p = p.tns[u];
}
p.end = true;
} public boolean search(String word) {
TrieNode p = root;
for(int i = 0; i < word.length(); i++) {
int u = word.charAt(i) - 'a';
if(p.tns[u] == null) return false;
p = p.tns[u];
}
return p.end;
} public boolean startsWith(String prefix) {
TrieNode p = root;
for(int i = 0; i < prefix.length(); i++) {
int u = prefix.charAt(i) - 'a';
if(p.tns[u] == null) return false;
p = p.tns[u];
}
return true;
}
}

Trie 树的例题

LeetCode 211. 添加与搜索单词

LeetCode 211. 添加与搜索单词

请你设计一个数据结构,支持 添加新单词 和 查找字符串是否与任何先前添加的字符串匹配 。

实现词典类 WordDictionary :

WordDictionary() 初始化词典对象
void addWord(word) 将 word 添加到数据结构中,之后可以对它进行匹配
bool search(word) 如果数据结构中存在字符串与 word 匹配,则返回 true ;否则,返回  false 。word 中可能包含一些 '.' ,每个 . 都可以表示任何一个字母。
  示例: 输入:
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
输出:
[null,null,null,null,false,true,true,true] 解释:
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
  提示: 1 <= word.length <= 500
addWord 中的 word 由小写英文字母组成
search 中的 word 由 '.' 或小写英文字母组成
最多调用 50000 次 addWord 和 search
class WordDictionary {
class Node {
boolean end;
Node[] tns = new Node[26];
}
Node root;
public void insert(String s) {
Node p = root;
for(int i = 0; i < s.length(); i++) {
int u = s.charAt(i) - 'a';
if(p.tns[u] == null) p.tns[u] = new Node();
p = p.tns[u];
}
p.end = true;
}
public WordDictionary() {
root = new Node();
} public void addWord(String word) {
insert(word);
} public boolean search(String s) {
return dfs(s, root, 0);
}
public boolean dfs(String s, Node p, int idx) {
int n = s.length();
if(idx == n) return p.end;
char c = s.charAt(idx);
if(c == '.') {
for(int i = 0; i < 26; i++) {
if(p.tns[i] != null && dfs(s, p.tns[i], idx + 1)) return true;
}
return false;
}
else {
int u = c - 'a';
if(p.tns[u] == null) return false;
return dfs(s, p.tns[u], idx + 1);
}
}
}

LeetCode 720. 词典中最长的单词

给出一个字符串数组 words 组成的一本英语词典。返回 words 中最长的一个单词,该单词是由 words 词典中其他单词逐步添加一个字母组成。

若其中有多个可行的答案,则返回答案中字典序最小的单词。若无答案,则返回空字符串。

 

示例 1:

输入:words = ["w","wo","wor","worl", "world"]
输出:"world"
解释: 单词"world"可由"w", "wo", "wor", 和 "worl"逐步添加一个字母组成。
示例 2: 输入:words = ["a", "banana", "app", "appl", "ap", "apply", "apple"]
输出:"apple"
解释:"apply" 和 "apple" 都能由词典中的单词组成。但是 "apple" 的字典序小于 "apply"
  提示: 1 <= words.length <= 1000
1 <= words[i].length <= 30
所有输入的字符串 words[i] 都只包含小写字母。
class Solution {
class Trie {
class TrieNode {
boolean end;
TrieNode[] tns = new TrieNode[26];
}
TrieNode root;
public Trie() {
root = new TrieNode();
}
public void insert(String s) {
TrieNode p = root;
for(int i = 0; i < s.length(); i++) {
int u = s.charAt(i) - 'a';
if(p.tns[u] == null) {
p.tns[u] = new TrieNode();
}
p = p.tns[u];
}
p.end = true;
}
public boolean search(String s) {
TrieNode p = root;
for(int i = 0; i < s.length(); i++) {
int u = s.charAt(i) - 'a';
if(p.tns[u] == null) return false;
p = p.tns[u];
}
return p.end;
}
public boolean startsWith(String s) {
TrieNode p = root;
for(int i = 0; i < s.length(); i++) {
int u = s.charAt(i) - 'a';
if(p.tns[u] == null) return false;
p = p.tns[u];
}
return true;
}
public boolean query(String s) {
TrieNode p = root;
for(int i = 0; i < s.length(); i++) {
int u = s.charAt(i) - 'a';
if(p.tns[u] == null) return false;
if(p.tns[u].end == false) return false;
p = p.tns[u];
}
return true;
}
}
public String longestWord(String[] words) {
Trie t = new Trie();
for(String word : words) {
t.insert(word);
}
String ans = "";
for(String word : words) {
int lena = ans.length();
int lenb = word.length();
if(lenb < lena) continue;
if(lenb == lena && word.compareTo(ans) > 0) continue;
if(t.query(word)) ans = word;
}
return ans;
}
}

【数据结构与算法】Trie(前缀树)模板和例题的更多相关文章

  1. 第15个算法-实现 Trie (前缀树)(LeetCode)

    解法代码来源 :https://blog.csdn.net/whdAlive/article/details/81084793 算法来源:力扣(LeetCode)链接:https://leetcode ...

  2. 数据结构—— Trie (前缀树)

    实现一个 Trie (前缀树),包含 插入, 查询, 和 查询前缀这三个操作. Trie trie = new Trie(); trie.insert("apple"); trie ...

  3. python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie)

    python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie) 主要包括两部分内容:(1)利用python中的dict实现Trie:(2) ...

  4. leetcode 208. 实现 Trie (前缀树)

    实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...

  5. 力扣208——实现 Trie (前缀树)

    这道题主要是构造前缀树节点的数据结构,帮助解答问题. 原题 实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = ...

  6. [Swift]LeetCode208. 实现 Trie (前缀树) | Implement Trie (Prefix Tree)

    Implement a trie with insert, search, and startsWith methods. Example: Trie trie = new Trie(); trie. ...

  7. 实现 Trie (前缀树)

    实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie(); trie.insert(" ...

  8. Java实现 LeetCode 208 实现 Trie (前缀树)

    208. 实现 Trie (前缀树) 实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作. 示例: Trie trie = new Trie() ...

  9. 力扣 - 208. 实现Trie(前缀树)

    目录 题目 思路 代码 复杂度分析 题目 208. 实现 Trie (前缀树) 思路 在我们生活中很多地方都用到了前缀树:自动补全,模糊匹配,九宫格打字预测等等... 虽然说用哈希表也可以实现:是否出 ...

  10. [leetcode] 208. 实现 Trie (前缀树)(Java)

    208. 实现 Trie (前缀树) 实现Trie树,网上教程一大堆,没啥可说的 public class Trie { private class Node { private int dumpli ...

随机推荐

  1. Redis-46面试题

    1.什么是 Redis?简述它的优缺点? Redis 的全称是:Remote Dictionary.Server,本质上是一个 Key-Value 类型的内存数据库,很像 memcached,整个数据 ...

  2. centos安装Libzip

    2018年06月29日 11:12:15 oxiaobaio 阅读数 4827   wget https://nih.at/libzip/libzip-1.2.0.tar.gztar -zxvf li ...

  3. MATLAB基础学习(2)

    function result=mysum(a,b)%创建函数以及外部接口 s=0; for i=a:b s=s+i; end result=s; disp(s); end Matlab中ones() ...

  4. Jest_JavaScript测试框架

    Jest是一个JavaScript测试框架,由Facebook用来测试所有JavaScript代码,包括React应用程序. 不同级别的自动化测试:单元.集成.组件和功能. 单元测试可以看作是和在组件 ...

  5. (一)什么是Rabbitmq

    1.初识MQ 1.1.同步和异步通讯 微服务间通讯有同步和异步两种方式: 同步通讯:就像打电话,需要实时响应. 异步通讯:就像发邮件,不需要马上回复. 两种方式各有优劣,打电话可以立即得到响应,但是你 ...

  6. 初见Redis

    Redis是什么,有什么特点和优势 Redis是一个开源用C语言编写的,基于内存,可以持久化,高性能的key-value数据库,并提供多种语言的API. 它也被称为数据结构服务器,因为值(value) ...

  7. 关于基于GDAL库QT软件平台下C++语言开发使用说明

    背景前提 地理空间数据抽象库(GDAL)是一个用于读取和编写栅格和矢量地理空间数据格式的计算机软件库,由开源地理空间基金会在许可的X / MIT风格免费软件许可下发布. 作为一个库,它为调用应用程序提 ...

  8. Solution -「NOIOL-S 2021」「洛谷 P7470」岛屿探险

    \(\mathcal{Description}\)   Link.   给定序列 \(\{(a,b)_n\}\),\(q\) 组形如 \((l,r,c,d)\) 的询问,求 \[\Big|\{i\in ...

  9. 【职业规划】该如何选择职业方向?性能?自动化?测开?,学习选择python、java?看完你会感谢我的~

    前言 随着近两年来互联网行业的飞速发展,互联网技术的从业人员也越来越多. 近两年来技术岗位中测试和前端工程师变成了程序员中最好招的岗位. 测试行业卷也越来越厉害了. 也正是因为如此,我们要把自己的路越 ...

  10. node(s) didn‘t match node selector.

    k8s集群中,有pod出现了 Pending ,通过 kubectl describe pod 命令,发现了如下报错 0/4 nodes are available: 1 node(s) had ta ...