这周老师让把深度学习的名词过一遍,小玛同学准备在过一遍Deep Learning名词的同时把基本的模型也过一遍。

感谢杰哥发我深度学习入门系列能让我有机会快速入门。

下面就来doc一些学到的东西

线性感知器

感知器(线性单元)有个问题就是当面对的数据集不是线性可分的时候,“感知器规则”可能无法收敛,这意味着我们永远无法完成一个感知器的训练。(即如果我们需要用感知器(神经元)拟合的映射不是线性的,那么需要用在拟合中添加非线性的函数)

SGD vs BGD

SGD: Stochastic Gradient Descent

BGD: Batch Gradient Descent

SGD 和 BGD 之间的主要区别在于每次迭代的更新步骤。BGD 在每一步都使用整个数据集计算梯度,而 SGD 在每一步都使用单个样本或一小批样本计算梯度。这使得 SGD 比 BGD 更快,计算成本更低。

然而,在凸集中,由于其随机性质,SGD 可能永远无法达到全局最小值,而是不断在接近全局最小值的区域内游荡。另一方面,BGD 只要有足够的时间和合适的学习率,就能保证找到全局最小值。

但是在非凸集中,随机性有助于我们逃离一些糟糕的局部最小值。

感知器 vs 神经元

一般情况下,说感知器的时候,它的激活函数是阶跃函数;当我们说神经元的时候,激活函数往往选择为sigmoid函数或者是tanh函数。

sigmoid函数

sigmoid函数的导数非常有趣,它可以用sigmoid函数自身来表示。这样,一旦计算出sigmoid函数的值,计算它的导数的值就非常方便。

令 \(y = sigmoid(x)\) , 则 \(y^{\prime} = y(1 − y)\)

梯度检查

下面是梯度检查的代码。如果我们想检查参数 的梯度是否正确,我们需要以下几个步骤:

  1. 首先使用一个样本 \(d\) 对神经网络进行训练,这样就能获得每个权重的梯度。
  2. 将 \(w_{ji}\) 加上一个很小的值( \(10^{-4}\) ),重新计算神经网络在这个样本 \(d\) 下的 \(E_{d+}\)。
  3. 将 \(w_{ji}\) 减上一个很小的值( \(10^{-4}\) ),重新计算神经网络在这个样本 \(d\) 下的 \(E_{d-}\) 。
  4. 根据下面的公式计算出期望的梯度值,和第一步获得的梯度值进行比较,它们应该几乎想等(至少4位有效数字相同)。
\[\frac{\partial E_d(w_{ji})}{\partial w_{ji}} \approx \frac{f(w_{ji} + \epsilon) - f(w_{ji} - \epsilon)}{2\epsilon}
\]

当然,我们可以重复上面的过程,对每个权重 \(w_{ji}\) 都进行检查。也可以使用多个样本重复检查。

深度学习入门系列之doc的更多相关文章

  1. 深度学习实践系列(2)- 搭建notMNIST的深度神经网络

    如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) ...

  2. 深度学习入门实战(二)-用TensorFlow训练线性回归

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...

  3. OPEN(SAP) UI5 学习入门系列之四:更好的入门系列-官方Walkthrough

    好久没有更新了,实在不知道应该写一些什么内容,因为作为入门系列,实际上应该更多的是操作而不是理论,而在UI5 SDK中的EXPLORER里面有着各种控件的用法,所以在这里也没有必要再来一遍,还是看官方 ...

  4. OPEN(SAP) UI5 学习入门系列之一:扫盲与热身(下)

    1 UI5代码结构 上一次我们一起用了20秒的时间完成一个UI5版的Hello World.应用打开后有一个按钮,按钮的文字是Hello World,点击这个按钮之后,按钮会慢慢的消失掉(Fade o ...

  5. 给深度学习入门者的Python快速教程

    给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_f ...

  6. 深度学习入门者的Python快速教程 - 基础篇

      5.1 Python简介 本章将介绍Python的最基本语法,以及一些和深度学习还有计算机视觉最相关的基本使用. 5.1.1 Python简史 Python是一门解释型的高级编程语言,特点是简单明 ...

  7. 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV

    这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...

  8. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  9. 深度学习实践系列(3)- 使用Keras搭建notMNIST的神经网络

    前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度 ...

  10. 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了

    Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...

随机推荐

  1. Promise 一些注意点

    Promise是一个构造函数,其身上有all.race.resolve.reject这些方法,都可以通过 Promise. 调用. 注意点1 Promise构造函数接受一个参数 => funct ...

  2. WebPack之懒加载原理

    代码结构 main.js console.log("这是main页面"); import(/* webpackChunkName: "foo" */" ...

  3. the third change day

    2022.5.9 今日名言:青春是一个短暂的美梦,当你醒来的时候,它早已消失的无影无踪.----莎士比亚 早起听了一堂听力课,感觉他教的挺好,准备跟着试试,快考试了,别来不及了. 目录 听力技巧 阅读 ...

  4. SQLyog中创建的数据库在idea找不到

    在里面把需要的数据库

  5. pycharm安装包的简便方法

  6. ASP.NET Core Web API Swagger 按标签Tags分组排序显示

    需求 swagger页面按标签Tags分组显示. 没有打标签Tags的接口,默认归到"未分组". 分组内按接口路径排序 说明 为什么没有使用GroupName对接口进行分组? 暂时 ...

  7. PicGo+Typora+Github图床配置步骤(一键上传本地图片)

    PicGo+Typora+Github图床配置步骤(一键上传本地图片) 一.配置前的准备 首先你需要有一个Github账号[GitHub]. 然后下载PicGo图片上传工具[PicGo]和Typora ...

  8. vmware workstation 版本合集

    各版本序列号 10.x:1Z0G9-67285-FZG78-ZL3Q2-234JG 11.x:YG74R-86G1M-M8DLP-XEQNT-XAHW2 12.x:ZC3TK-63GE6-481JY- ...

  9. SpringBoot——日志及原理

    一.SpringBoot日志 选用 SLF4j(接口)和 logback(实现类),除了上述日志框架,市场上还存在 JUL(java.util.logging).JCL(Apache Commons ...

  10. SpringBoot——MVC原理

    更多内容,前往 IT-BLOG 一.SpringMVC自动配置 SpringMVC auto-configuration:SpringBoot 自动配置好了SpringMVC.以下是 SpringBo ...