UVA437 The Tower of Babylon

题解

初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底。然后用这些方块尽可能高地堆叠成一个塔,要求只有一个方块的底的两条边严格小于另一个方块的底的两条边,这个方块才能堆在另一个上面

问题的思考在于每种方块有无限个,如果我们直接利用该条件问题会变得比较复杂。其实仔细考虑方块堆叠的要求,会发现这是一个约束很强的条件。

注意到,方块堆叠的要求描述的对象不只是方块本身,更细地说,它应该描述的是方块摆放方式。一个长方体方块有三个面可以作为底(另三个面为对面,面与面对应相同),选择其中一个面后又需要再分两种摆放方式。所以对每种方块应该有六种摆放方式。用向量可以描述这六种摆放方式。前两个数字表示底面的长和宽,第三个数字表示高。

  1. \((x_i, y_i, z_i)\)
  2. \((y_i, x_i, z_i)\)
  3. \((y_i, z_i, x_i)\)
  4. \((z_i, y_i, x_i)\)
  5. \((x_i, z_i, y_i)\)
  6. \((z_i, x_i, y_i)\)

根据方块堆叠的要求,我们可以进一步得出,每种方块摆放方式(共 \(6n\) 种)在堆叠过程中最多出现一次。否则,存在一种摆放方式至少出现了两次,对于该种方块摆放方式,无论谁在上谁在下,都会存在一个方块的底的两条边等于另一个方块的底的两条边的情况,与严格小于相悖。所以对于每种方块摆放方式,我们可以选择“摆放”或是“不摆放”。

我们进一步思考方块堆叠的要求,它要保证底的两条边都得严格小于另一底的两条边,因此我们可以先对其中一条边做一个排序,再保证“选出的所有方块”的另一条边堆叠时依次严格小于即可。也就是说可以将二维的问题通过预处理排序将为一维的问题,而且可以进一步发现该一维问题是比较典型的动态规划问题(最长上升子序列)。

对在 \(x\) 轴上的每条边做一个排序(从大到小),然后根据 \(y\) 轴上的边的值选择“摆放”或是“不摆放”,最后要使得 \(z\) 轴上的值加和最大。使用一维 \(dp\) 数组记录状态,\(dp[i]\) 表示以第 \(i\) 个已摆放的前 \(i\) 个方块摆放方式的最大高度。

状态转移方程

\(dp[i]\) 状态表示已经“摆放”了第 \(i\) 号方块摆放方式,达到最大高度的堆叠方式可能需要垫一个方块,也可能不需要。如果垫一个方块则该方块的摆放方式只能是前面 \(i-1\) 个方块摆放方式中的一个(预处理时已将方块摆放方式排序,后面的方块一定不满足要求),由此可得状态转移方程:

\[dp[i] = \max \left( \max_{0 \leqslant j \leqslant i - 1} dp(j), 0 \right) + blocks[i].g
\]

状态搜索方向

直接将 \(dp[i]\) 从左至右依次更新即可。

程序:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std; int n, x, y, z, cnt = 0;
struct node {
int c, k, g;
node(int x, int y, int z) {
c = x; k = y; g = z;
}
};
vector<node> blocks;
int dp[305]; bool cmp(node a, node b) {
if (a.c > b.c) return true;
else if (a.c == b.c) {
if (a.g > b.g) return true;
else return false;
}
else return false;
}
int main()
{
while (cin >> n && n != 0) {
blocks.clear();
for (int i = 0; i < n; ++i) {
scanf("%d %d %d", &x, &y, &z);
// 每个方块六种摆放方式
blocks.push_back(node(x, y, z));
blocks.push_back(node(y, x, z));
blocks.push_back(node(x, z, y));
blocks.push_back(node(z, x, y));
blocks.push_back(node(z, y, x));
blocks.push_back(node(y, z, x));
}
// 排序
sort(blocks.begin(), blocks.end(), cmp);
memset(dp, -1, sizeof(dp));
int ans = -1;
for (int i = 0; i < 6 * n; ++i) {
dp[i] = blocks[i].g;
for (int j = 0; j < i; ++j) {
if (blocks[i].c < blocks[j].c && blocks[i].k < blocks[j].k)
dp[i] = max(dp[j] + blocks[i].g, dp[i]);
}
ans = max(ans, dp[i]);
}
printf("Case %d: maximum height = %d\n", ++cnt, ans);
}
return 0;
}

ACM - 动态规划 - UVA437 The Tower of Babylon的更多相关文章

  1. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  2. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  3. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  4. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  5. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  6. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  7. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  8. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  9. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

随机推荐

  1. Glob 语法及解析

    Glob 语法及解析 目录 1. glob 简介 2. glob 语法 3. .gitignore 4. Python glob 1 glob 简介 glob 是用于匹配符合指定模式的文件集合的一种语 ...

  2. pandas模块篇(终章)及初识mataplotlib

    今日内容概要 时间序列 针对表格数据的分组与聚合操作 其他函数补充(apply) 练习题(为了加深对DataFrame操作的印象) mataplotlib画图模块 今日内容详细 时间序列处理 时间序列 ...

  3. Scala语法1

    目录 main方法和def 函数 变量,类型转换,字符串分割拼接 文件读写和JDBC 面向对象编程 继承 case类,最常用的 main方法和def 函数 package scala_01 /** * ...

  4. csrf跨站请求、相关装饰器、auth模块使用

    昨日内容回顾 django操作cookie和session # 作用:就是保存用户信息,保存一系列数据,还可以做缓存 保留一段时间 # session是基于cookie工作的 1. 数据是保存在服务端 ...

  5. 测试平台系列(91) 编写oss管理页面

    大家好~我是米洛! 我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的教程,希望大家多多支持. 欢迎关注我的公众号米洛的测开日记,获取最新文章教程! 回顾 上一节我们编写好了oss相关 ...

  6. 【SpringMVC从入门到精通】00-SpringMVC 简介

    笔记来源:[尚硅谷]SpringMVC教程丨一套快速上手spring mvc 目录 SpringMVC 简介 1.课程介绍 2.什么是 MVC? 3.什么是 SpringMVC? 4.SpringMV ...

  7. Android 应用框架层 SQLite 源码分析

    概述   Android 在应用框架层为开发者提供了 SQLite 相关操作接口,其归属于android.database.sqlite包底下,主要包含SQLiteProgram, SQLiteDat ...

  8. 30道关于linux的基础命令小题,先练练手

    1.修改主机名为yuanlai0224命令是: 2.切换⽬录到/yuchao01/data/,再创建脚本/my_website/scripts/start.sh. 绝对路径.相对路径两种写法 3.查看 ...

  9. tp5(laravel7) ajax模型修改数据

    ① 设置ajax请求(10分) ② 后台更改数据值(10分) ③ 重新计算平均分(10分) ④ 无刷新更新评分结果(10分) 思路: 在详情页面中有一个评分的按钮,单击后进行修改数据,首先找见本条数据 ...

  10. Thinkphp3.2数据库字段自动转小写,字段大小写自动转换,以及thinkphp3一些bug

    公司在使用thinkphp框架,版本也有些老,被一些bug坑了,记录一下 自动转小写解决办法,最简单的就是在配置文件加上 'DB_PARAMS' => [\PDO::ATTR_CASE => ...