<题目链接>

题目大意:

给出a和b,如果一个数每一位都是a或b,那么我们称这个数为good,在good的基础上,如果这个数的每一位之和也是good,那么这个数是excellent。求长度为n的excellent数的个数mod(1e9+7)。

解题分析:

我们可以枚举a的个数m,所以b的个数为(n-m),然后判断这种情况是否可行,即,是否满足a*m+b*(n-m)为good number ,如果满足的话,则答案加上C(n,m)。因为n很大,并且在计算组合数的过程中,需要除以很大的数,所以需要求逆元,因为本题模数为1e9+7,为质数,所以可以用费马小定理求逆元。组合数计算公式如下:

$$C(n,m)=\frac{n!}{(n-m)!*m!}(m≤n)$$

所以,我们需要对$(n-m)!$和$m!$求逆元

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. typedef long long ll;
  5. const ll mod = 1e9+;
  6. const int N = 1e6+;
  7. ll n,a,b,fact[N];
  8.  
  9. bool isgood(ll x){ //判断和是否也是good
  10. while(x){
  11. ll res=x%;
  12. if(res!=a&&res!=b)return false;
  13. x/=;
  14. }return true;
  15. }
  16.  
  17. ll pw(ll a,ll b){
  18. if(b==)return ;
  19. ll ans=;
  20. while(b){
  21. if(b&)ans=ans*a%mod;
  22. a=a*a%mod;
  23. b>>=;
  24. }return ans;
  25. }
  26. int main(){
  27. cin>>a>>b>>n;
  28. fact[]=;
  29. for(int i=;i<=n;i++)fact[i]=fact[i-]*i%mod;
  30. ll ans=;
  31. for(int i=;i<=n;i++){
  32. if(isgood(a*i+b*(n-i))){
  33. ll tmp1=pw(fact[i],mod-)%mod; //费马小定理求逆元
  34. ll tmp2=pw(fact[n-i],mod-)%mod;
  35. ans+=fact[n]*tmp1%mod*tmp2%mod;
  36. }
  37. }
  38. printf("%lld\n",ans%mod);
  39. }

Codeforces 300C Beautiful Numbers 【组合数】+【逆元】的更多相关文章

  1. CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)

    C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. CodeForces 300C Beautiful Numbers

    枚举,组合数,逆元. 枚举$a$用了$i$个,那么$b$就用了$n-i$个,这个时候和$sum=a*i+b*(n-i)$,判断$sum$是否满足条件,如果满足,那么答案加上$C(n,i)$. #inc ...

  3. [CodeForces 300C Beautiful Numbers]组合计数

    题意:十进制的每一位仅由a和b组成的数是“X数”,求长度为n,各数位上的数的和是X数的X数的个数 思路:由于总的位数为n,每一位只能是a或b,令a有p个,则b有(n-p)个,如果 a*p+b*(n-p ...

  4. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  5. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  6. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  7. CodeForces 55D Beautiful numbers

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  8. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  9. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

随机推荐

  1. ES6学习路上的小学生,promise处理异步操作,简易原始起步之用。先能用,再深究!

    ES6的promise对象,让我们更容易的处理这样的需求:执行完一个方法以后,再去执行下一个方法. 理解尚浅之时,先用于项目之中. var promise1 = new Promise(functio ...

  2. Unity3D用户手册

    Unity Manual 用户手册 Welcome to Unity. 欢迎使用Unity. Unity is made to empower users to create the best int ...

  3. CSS3媒体查询的部分重要属性

    width:视口宽度 height:视口高度 device-width:渲染表面的宽度,就是设备屏幕的宽度 device-height:渲染表面的高度,就是设备屏幕的高度 orientation:检查 ...

  4. 性能测试四十七:jmeter性能监控工具ServerAgent

    在liunx压力机进行压测的时候,可以在widows下开一个jmeter,只进行监控用,不产生压力,监控效果和dstat差不多 jmeter安装客户端插件 把工具放到服务端任意目录并解压,我这里放到了 ...

  5. Python实现switch效果

    Java中有switch这个东东有的地方使用switch感觉还挺好使,但是Python没有提供switch这个东东,下面我们想办法来完成类似Java和C里面的那种switch效果. Java示例代码: ...

  6. Java 产生一个大于等于200,小于300的随机数,且是10的整数倍

    public class Random200_300 { public static void main(String[] args) { int r1 = 0; while (true) { r1 ...

  7. linux添加自定义命令

    想添加一个命令, 比如我输入 cdms 按回车, 然后就执行了: cd /mnt/gopath/src/test/app/ 这条命令方法: vi /etc/bashrc 在文件末尾添加 alias c ...

  8. C++11新特性--decltype (转)

    返回值 decltype(表达式) [返回值的类型是表达式参数的类型] 这个可也用来决定表达式的类型,就像Bjarne暗示的一样,如果我们需要去初始化某种类型的变量,auto是最简单的选择,但是如果我 ...

  9. 史上最简单的SpringCloud教程 | 第二篇: 服务消费者(rest+ribbon)

    在上一篇文章,讲了服务的注册和发现.在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的通讯是基于http restful的.Spring cloud有两种服务调用方式,一种是ribbon+r ...

  10. [转] whistle--全新的跨平台web调试工具

    whistle是基于Node实现的跨平台web调试代理工具,类似的工具有Windows平台上的Fiddler+Willow,基于Java实现的Charles,及公司同事基于Node实现的Livepoo ...