题目链接 1384 -- Genius ACM

给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:
从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 m 对,则取到不能取为止),使得“每对数的差的平方”之和最大,这个最大值 就称为集合 S 的“校验值”。
现在给定一个长度为 n 的数列 A 以及一个整数 k。我们要把 A 分成若干段,使得 每一段的“校验值”都不超过 k。求最少需要分成几段。

#include<bits/stdc++.h>
using namespace std;
#define maxn 600005
#define LL long long
int a[maxn],b[maxn],c[maxn];
int n,m;
LL k;
void mem(int l,int mid,int r){
   ,zz=r,ii=l;
   while(i<=mid&&j<=r){
      if(b[i]<b[j]) c[ii++]=b[i++];
      else c[ii++]=b[j++];
   }
   while(i<=mid) c[ii++]=b[i++];
   while(j<=r) c[ii++]=b[j++];
}
bool xxx(int l,int mid,int r){
   mem(l,mid,r);
   LL ans=,i=,j=l,kk=r;
   while(j<kk&&i<m){
      LL z=;
      z=1LL*(c[j++]-c[kk--]);
      ans+=z*z;
      i++;
   }
   ;
   ;
}
bool work(int l,int r,int rr){
   ;j<=r;j++) b[j]=a[j]; // 每次只用在b后面加上我们后来倍增的一段区间
   sort(b+rr+,b+r+);  // 把增加的一段排序 后面可以用归并
   ;
   ;
}
int main(){
   int t;
   cin>>t;
   while(t--){
      scanf("%d%d%lld",&n,&m,&k);
      ;j<=n;j++){
         scanf("%d",&a[j]);
      }
      ;
      ,p=,r=l;
      b[]=a[];
      while(l<=n){
         if((r+p)<=n&&work(l,r+p,r)){
             for(int i=l;i<=r+p;i++) b[i]=c[i];  //把每次符合的序列按顺序放在b里面
             r+=p;
             p*=;
         };
         ){
            l=r+;
            r=l;
            p=;
            ans++;
         }
      }
      cout<<ans<<endl;
   }
}

hihocoder--1384 -- Genius ACM (倍增 归并)的更多相关文章

  1. [hihocoder #1384] Genius ACM 解题报告(倍增)

    题目链接:http://hihocoder.com/problemset/problem/1384 题目大意: 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M ...

  2. hihoCoder#1384 : Genius ACM

    对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...

  3. $CH0601\ Genius\ ACM$ 倍增优化DP

    ACWing Description 给定一个长度为N的数列A以及一个整数T.我们要把A分成若干段,使得每一段的'校验值'都不超过N.求最少需要分成几段. Sol 首先是校验值的求法: 要使得'每对数 ...

  4. CH0601 Genius ACM【倍增】【归并排序】

    0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...

  5. Contest Hunter 0601 Genius ACM

    Genius ACM Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every d ...

  6. ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)

    描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...

  7. hihocoder1384/CH0601 Genius ACM[贪心+倍增+归并排序]

    提交地址. 关于lyd给的倍增方法,即从当前枚举向后的$2^k$长度($k$从$1$开始),如果可行就将$k$加一以扩大范围,不可行时将范围不断减半直至$0$. 举个例子,假设当下在1,目标答案是13 ...

  8. Genius ACM

    题解: 发现匹配一定会选最大和最小匹配,确定左右端点之后nlogn排序后算 比较容易想到二分 最坏情况每次1个 $n^2*(logn)^2$ 没错暴力的最差复杂度是$n^2*logn$的 发现长度与次 ...

  9. XJOI 7191 Genius ACM

    二分+倍增 题目 题目中的最大校验值应由数组排序后,取出最大值和最小值,次大值和次小值--进行做差平方取和 所以在加入一个新的数时,校验值是不会下降的 那么可以发现,校验值是单调递增的,所以可以用二分 ...

随机推荐

  1. Git的配置与使用

    Git的配置与使用 一,未配置过git 1.1,安装Git https://git-for-windows.github.io/ 1,2,鼠标右键点击Git Bash Here 1.3,输入命令 cd ...

  2. 428.x的n次幂

    实现 pow(x,n) 不用担心精度,当答案和标准输出差绝对值小于1e-3时都算正确 样例 Pow(2.1, 3) = 9.261 Pow(0, 1) = 0 Pow(1, 0) = 1 挑战 O(l ...

  3. Select2 4.0.5 API

    详细属性参考官方API,https://github.com/select2/select2/releases/tag/4.0.5 注:4.0.5版本API与3.x版本有差异,有些属性已废弃,以下列出 ...

  4. getMessage(),getFile,getLine获取异常用法

    try { $param = $request->all(); $param['building_id'] = 0; $param['sync'] = 2; // 1小程序2App $param ...

  5. Docker操作删除所有容器镜像

    借鉴博客:https://www.cnblogs.com/yanyouqiang/p/8301856.html https://blog.csdn.net/wy_97/article/details/ ...

  6. centos6.5安装配置NTP,集群各机器间时间同步

    试验环境 提君博客原创 >>提君博客原创  http://www.cnblogs.com/tijun/  << IP 主机名 角色 描述 同步方式 192.168.11.11 ...

  7. day 7-8 协程

    不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去调 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们 ...

  8. js获取非行间样式/写入样式(行间)

    <!--DOCTYPE html--> <html> <head> <meta charset="utf-8" /> <sty ...

  9. java.io.FileNotFoundException关于使用Intellij Idea时系统找不到指定文件的解决方案

    第一种:Intellij Idea 这个智障编辑器 在用的时候 是你在这个web目录下的空文件夹他是不给你部署的 解决在空文件夹下面随便放个文件夹就行了 第二种:也是最笨的方法,但是有前提条件就是 你 ...

  10. python学习笔记(11)--数据组织的维度

    数据的操作周期 存储  -- 表示 -- 操作 一维数据表示 如果数据有序,可以使用列表[]:如果数据没有顺序,可以使用集合{} 一维数组存储 存储方式一:空格分隔 ,使用一个或多个空格分隔进行分隔, ...