MNIST

数据

train-images-idx3-ubyte.gz:训练集图片

train-labels-idx1-ubyte.gz:训练集图片类别

t10k-images-idx3-ubyte.gz:测试集图片

t10k-labels-idx1-ubyte.gz:测试集图片类别

训练

# 加载训练集和测试集数据
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot = True) import os
# 日志级别
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# 服务重启的bug
os.environ['KMP_DUPLICATE_LIB_OK']='True' # 一张图片一行:28*28=784
x = tf.placeholder(tf.float32, shape=[None, 784])
# 一张图片对应10个类别的概率
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# 权重
W = tf.Variable(tf.zeros([784,10]))
# 偏置
b = tf.Variable(tf.zeros([10])) #权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度,避免神经元节点输出恒为0的问题(dead neurons)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') #第一层卷积层,32个卷积核去分别关注32个特征
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])#将单张图片从784维向量重新还原为28x28的矩阵图片,-1表示取出所有的数据
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#第二层卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#使用Dropout,训练时为0.5,测试时为1,keep_prob表示保留不关闭的神经元的比例
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#把1024维的向量转换成10维,对应10个类别
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
#交叉熵
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
#定义train_step
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#定义测试准确率
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#存储训练的模型
saver = tf.train.Saver()
#创建Session和变量初始化
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
#标准训练是20000步,这里为节约时间训练1000步
for i in range(1000):
batch = mnist.train.next_batch(50)
if i%100 == 0:#每100步输出一次在验证集上的准确度
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) saver.save(sess, /path/modelName) #模型存储的路径
#输出在测试集上的准确度
print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) sess.close()

  

预测

AI tensorflow MNIST的更多相关文章

  1. TensorFlow MNIST(手写识别 softmax)实例运行

    TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...

  2. 学习笔记TF056:TensorFlow MNIST,数据集、分类、可视化

    MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机 ...

  3. TensorFlow MNIST 问题解决

    TensorFlow MNIST 问题解决 一.数据集下载错误 错误:IOError: [Errno socket error] [Errno 101] Network is unreachable ...

  4. Mac tensorflow mnist实例

    Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上 ...

  5. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  6. tensorflow MNIST新手教程

    官方教程代码如下: import gzip import os import tempfile import numpy from six.moves import urllib from six.m ...

  7. TensorFlow MNIST初级学习

    MNIST MNIST 是一个入门级计算机视觉数据集,包含了很多手写数字图片,如图所示: 数据集中包含了图片和对应的标注,在 TensorFlow 中提供了这个数据集,我们可以用如下方法进行导入: f ...

  8. AI - TensorFlow - 示例01:基本分类

    基本分类 基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification Fash ...

  9. AI - TensorFlow - 分类与回归(Classification vs Regression)

    分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归 ...

随机推荐

  1. BZOJ1299: [LLH邀请赛]巧克力棒(Nim游戏)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 552  Solved: 331[Submit][Status][Discuss] Descriptio ...

  2. PMS 修改禅道默认首页元素及展示

    修改禅道默认首页元素及展示 by:授客 QQ:1033553122 测试环境: 禅道项目管理软件ZenTaoPMS.9.5.1.win64 需求描述 如下,安装禅道后访问默认首页,展示如下,我们希望它 ...

  3. loadrunner 脚本录制-录制选项设置HTML-based URL-based Script

    脚本录制-录制选项设置, HTML-based Script与URL-based Script by:授客 QQ:1033553122 Access:Vugen->Tool->Record ...

  4. 章节二、4-String以及StringBuffer和StringBuilder的对比

    1.String---字符串常量 字符串是一个常量,一旦被初始化就不会被改变,它存储在字符串常量池中,每一个字符串对象在java中都是线程安全的.   2.StringBuffer---字符串变量 是 ...

  5. thread/threading——Python多线程入门笔记

    1 什么是线程? (1)线程不同于程序. 线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制: 多线程类似于同时执行多个不同程序. (2)线程不同于进程. 每个独立的进程有一个程 ...

  6. SQL强化练习(面试与学习必备)

    一.经典选课题A 1.1.请同时使用GUI手动与SQL指令的形式创建数据库.表并添加数据. 题目:设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教 ...

  7. SQL SERVER启动步骤

    第一步 从注册表读取SQL SERVER启动信息 (1)Audit  Level:设置SQL SERVER是否记录用户登陆信息 Login Mode:设置SQL SERVER登陆类型是只接受windo ...

  8. python opencv SIFT,获取特征点的坐标位置

    备注:SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点.边缘点.暗区的亮点及 ...

  9. C# -- 内插字符串的使用

    C# -- 内插字符串的使用 (1) 字符串文本以 $ 字符开头,后接左双引号字符. $ 符号和引号字符之间不能有空格.(2) 内插字符串表达式的结果可以是任何数据类型.(3) 可通过在内插表达式后接 ...

  10. 第七章 LED将为我闪烁:控制发光二级管

    LED驱动开发实验 如图所示,LED1-LED2 分别与GPC0_3.GPC0_4 相连,通过GPC0_3.GPC0_4 引脚的高低电平来控制三极管的导通性,从而控制LED 的亮灭. 根据三极管的特性 ...