Problem

poj-3682

题目大意:抛一次硬币有\(p\)的概率得到正面,当有\(n\)次正面时停止,抛第\(i\)次的花费为\(2i-1\),求抛的期望次数和期望花费

Solution

本来做这题就是想巩固一下期望方面的东西,可能有点拓展

第一问比较明显,设\(f_i\)表示抛掷了\(i\)次时的期望天数,依题意有:

\(f_i=p\cdot f_{i-1}+(1-p)\cdot f_i+1\)

解释一下,对于抛一次,有\(p\)的概率正面,只要再抛\(f_{i-1}\)次即可,所以加上\(p\cdot f_{i-1}\),有\(1-p\)的概率反面,则仍要抛\(f_i\)次,所以加上\((1-p)\cdot f_i\),再加上这次抛掷的一次,我们就得到了有\(i\)次正面时天数的期望

上面的式子移项消掉,得到\(f_i=f_{i-1}+\frac 1p\),即\(f_i=\frac ip\)


第二问有点意思,设\(E_i\)表示抛掷了\(i\)次正面时的期望花费,仿照上面的式子写出:

\(E_i=p\cdot E_{i-1}+(1-p)\cdot E_i+2f_i-1\)

式子解释和上面一样,只是抛掷的成本变为了\(2f_i-1\)

同样化简,\(E_i=E_{i-1}+\frac {2i}{p^2}-\frac 1p\),求和可得\(E_i=\frac {(1+n)n}{p^2}-\frac np\)


至于为什么抛掷花费可以用\(2f_i-1\)这种利用期望表示的式子,其实是因为\(2f_i-1\)这个式子为一次函数,我们可以用两种方法证明在外部函数为一次函数的情况下,可以利用期望做自变量得到因变量的期望

同时扩展一下,我们可以证明,仅有一次函数满足这个条件

我们明确一下证明的内容,即若\(x_0\)为\(x\)的期望,若\(F(x_0)\)等于\(F(x)\)的期望,则\(F(x)\)一定为一次函数(为了方便表达,设\(F^{'}(x)\)为\(F(x)\)的期望)

①证明一次函数可行

由于\(x_0=\sum p_iv_i\),我们将其中\(p_i\)的影响去掉,用一个无穷集合记录,在这个集合中\(v_i:v_j\)的数量比为\(p_i:p_j\),而\(x_0\)则可以表达为这个集合元素的平均数(实际上就是将加权平均数化为了平均数,更便于理解)

而\(x_0\)的定义为集合数中的一次方平均数,则在一次函数\(F(x)\)的影响下,\(\frac {\sum F(x)}n=F(\frac {\sum x}n)\)

推广一下,若\(x_0\)为元素的\(k\)次方期望(加权平均值),则仅有\(k\)次函数满足上述性质

②证明仅有一次函数可行

由于\(x_0=\sum p_iv_i\)

则有\(F(x_0)=F(\sum p_iv_i),F^{'}(x)=\sum p_iF(v_i)\)

如果要求\(F(x_0)=F^{'}(x)\),则要求\(F(\sum p_iv_i)=\sum p_iF(v_i)\),满足条件下\(F(pv)=pF(v)\),则\(F(x)\)一定为正比例函数,但考虑到求\(\sum\)时项的数量都是相等的,所以我们可以在正比例函数的基础上加上一个常数,这样在求\(\sum\)后常数之间可以抵消。由此可证\(F(x)\)一定要求为一次函数

Code

#include <cstdio>
int main(){
int n;double p;
while(1){
scanf("%d%lf",&n,&p);if(!n)return 0;
printf("%.3lf %.3lf\n",n/p,1.0*n*(n+1-p)/(p*p));
}
}

题解-poj3682King Arthur's Birthday Celebration的更多相关文章

  1. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  2. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  3. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  4. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  5. King Arthur's Birthday Celebration

    每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...

  6. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  7. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  8. 题解 [CF525D] Arthur and Walls

    题面 解析 首先考虑将一个\('*'\)变成\('.'\)后会形成什么, 显然至少是一个\(2\times 2\)的矩形. 因为\(1\times 1\)和\(1\times 2\)的改了没用啊, 而 ...

  9. poj 3682 King Arthur's Birthday Celebration (期望dp)

    传送门 解题思路 第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以 ...

随机推荐

  1. MyBatis-resultType 几种返回类型

    一.返回集合 1.返回JavaBean集合 public List<MyUser> selectMyUserByNameLike(String name); <!-- resultT ...

  2. python django基础五 ORM多表操作

    首先在创建表的时候看下分析一下 1.作者表和作者详细地址表  一对一关系 理论上谁都能当主表 把Author设置成主表 au=models.OneToOneField(to='AuthorDetail ...

  3. html基本进阶知识【转】

    inline和block的区别: 网页一般是两种元素组合起来的,一种是内联元素,也就是行内显示,加上width和height没效果.一种是区块元素,可以加上对应的width和height,通常使用在网 ...

  4. uva11916 Emoogle Grid (BSGS)

    https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...

  5. Android的Device File Explorer刷新文件

    不知道为什么,右键点sync不起作用,必须点一下列表中的设备,才可以.

  6. 【bzoj 3110】[Zjoi2013]K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  7. Mysql 的远程设置 和链接方式

    Mysql 设置远程链接: > grant all privileges on *.* to 用户@localhost identified by '密码'; > flush privil ...

  8. 可见参数和增强for以及自动拆装箱

    可变参数:定义方法的时候不知道该定义多少个参数格式: 修饰符 返回值类型 方法名(数据类型… 变量名){ } 注意: 这里的变量其实是一个数组如果一个方法有可变参数,并且有多个参数,那么,可变参数肯定 ...

  9. Karel版本的nnet1

    除了chain,nnet1, nnet2, nnet3训练时调整转移模型,chain模型使用类似与MMI的训练准则 概要 Karel Vesely的nnet1用到以下技术: 每一层进行预训练,基于RB ...

  10. python购物车作业

    # -*- coding:utf8 -*- # Author:Wang Yao goods = [{"name": "电脑", "price" ...