ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies
There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more interesting, Miss Li comes up with the rule: All the children line up according to their student number (1...N)(1...N)(1...N), and each time a child is invited, Miss Li randomly gives him some candies (at least one). The process goes on until there is no candy. Miss Li wants to know how many possible different distribution results are there.
Input
The first line contains an integer TTT, the number of test case.
The next TTT lines, each contains an integer NNN.
1≤T≤1001 \le T \le 1001≤T≤100
1≤N≤101000001 \le N \le 10^{100000}1≤N≤10100000
Output
For each test case output the number of possible results (mod 1000000007).
样例输入 复制
1
4
样例输出 复制
8 题意:
给n个小孩发糖果,总共有n个糖果,小孩按顺序排好,把糖果分发,不必每个小孩都有糖果,但是如果不是每个孩子都有糖果,那么只能是在后面的小孩没有糖果。问有多少种方案。 题解:
找到规律,对于每一个n,方案数为2^n,这里应用快速幂,但是n太大了,想办法减小它,这里要应用一下费马小定理(假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)),即(a^n)%mod,如果mod为质数,a^(n%(mod-1))%mod。(本题中mod为1e9+7) 代码:
#include <bits/stdc++.h> using namespace std;
typedef long long ll;
const ll mod=1e9+; ll Pow(ll a,ll b)
{
ll ans=;
a%=mod;
while(b){
if(b&) ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
} int main()
{
int t;
ll i,n;
char a[];
cin>>t;
while(t--){
scanf("%s",a);
int len=strlen(a);
n=;
for(i=;i<len;i++){
n=(n*+(a[i]-''))%(mod-);
}
printf("%lld\n",Pow(,n-)%mod);
}
return ;
}
ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies的更多相关文章
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
- ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)
题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...
- ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解
题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 :所以3共有4种),n最多有1e5位,答案取模p = 1e9+7 思路:就是往n个东西中间插任意个板子 ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies
There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
随机推荐
- Xampp PHPStorm XDebug配置
(1)https://xdebug.org/download.php 下载当前Xampp对应的XDebug版本. (2)将该dll放入C:\xampp\php\ext (3)修改Control Pan ...
- 【noip 2012】提高组Day1T3.开车旅行
Description 小A和小B决定利用假期外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市i 的海拔高度为Hi,城市i 和城市 ...
- ThinkPHP5.0.21&5.1.* 代码执行和命令执行漏洞利用
ThinkPHP5.0.21&5.1.* 代码执行和命令执行漏洞利用 ThinkPHP5.0.21&5.1.* exploit code execution and command ...
- nginx 基于uwsgi部署Django
1.安装nginx yum install -y nginx(需要epel源) 2.安装环境 可以考虑使用虚拟化环境,本处不再使用 3.安装uwsgi yum groupinstall "D ...
- Vue.js 技术揭秘(学习) 深入响应式原理 nextTick外传
microTask mutationObserve. promise.then macroTask setImmediate. messageChannnel.setTimeout.postMess ...
- day 11 - 2 装饰器练习
1.编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件)要求登录成功一次,后续的函数都无需再输入用户名和密码 FLAG = False def login(func): def inner ...
- day 3 - 2 数据类型练习
1.有变量 name = " aleX leNB " 完成如下操作 name = " aleX leNB " # 1) 移除两端空格n1 = name.stri ...
- SqlServer_存储过程
1.查询全部数据 create proc stu1 as begin select * from Students end go exec stu1 2.根据姓名查询信息 --存储过程内部自带值cre ...
- Flask三种导入配置文件的方式
# 配置对象,里面定义需要给 APP 添加的一系列配置 class Config(object): DEBUG = True # 从配置对象中加载配置 app.config.from_object(C ...
- Setup ActorComponents
向头文件中添加一些组件 UStaticMeshComponent* MeshComp;//静态网格体组件 USphereComponent* SphereComp;//球体组件//用来接收物体碰撞信息 ...