ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies
There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more interesting, Miss Li comes up with the rule: All the children line up according to their student number (1...N)(1...N)(1...N), and each time a child is invited, Miss Li randomly gives him some candies (at least one). The process goes on until there is no candy. Miss Li wants to know how many possible different distribution results are there.
Input
The first line contains an integer TTT, the number of test case.
The next TTT lines, each contains an integer NNN.
1≤T≤1001 \le T \le 1001≤T≤100
1≤N≤101000001 \le N \le 10^{100000}1≤N≤10100000
Output
For each test case output the number of possible results (mod 1000000007).
样例输入 复制
1
4
样例输出 复制
8 题意:
给n个小孩发糖果,总共有n个糖果,小孩按顺序排好,把糖果分发,不必每个小孩都有糖果,但是如果不是每个孩子都有糖果,那么只能是在后面的小孩没有糖果。问有多少种方案。 题解:
找到规律,对于每一个n,方案数为2^n,这里应用快速幂,但是n太大了,想办法减小它,这里要应用一下费马小定理(假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)),即(a^n)%mod,如果mod为质数,a^(n%(mod-1))%mod。(本题中mod为1e9+7) 代码:
#include <bits/stdc++.h> using namespace std;
typedef long long ll;
const ll mod=1e9+; ll Pow(ll a,ll b)
{
ll ans=;
a%=mod;
while(b){
if(b&) ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
} int main()
{
int t;
ll i,n;
char a[];
cin>>t;
while(t--){
scanf("%s",a);
int len=strlen(a);
n=;
for(i=;i<len;i++){
n=(n*+(a[i]-''))%(mod-);
}
printf("%lld\n",Pow(,n-)%mod);
}
return ;
}
ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies的更多相关文章
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
- ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)
题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...
- ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解
题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 :所以3共有4种),n最多有1e5位,答案取模p = 1e9+7 思路:就是往n个东西中间插任意个板子 ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies
There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
随机推荐
- Linux centos6.7网卡配置
系统安装完成后 以此执行以下命令 相当于自动获取IP地址 setup命令——Network configuration———Device configuration———eth0 依次保存退出 实际上 ...
- extern 关键字使用
extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 如在头文件中: extern in ...
- lambda、pair、智能指针及时间函数
Lambda 表达式 auto f1 = [](int x, int y) { return x + y; };cout << f1(2, 3) << endl; int n ...
- 均方根误差(RMSE)与平均绝对误差(MAE)
RMSE Root Mean Square Error,均方根误差 是观测值与真值偏差的平方和与观测次数m比值的平方根. 是用来衡量观测值同真值之间的偏差 MAE Mean Absolute Erro ...
- javascript常用函数封装——运动、cookie、ajax、获取行内样式兼容写法、拖拽
运动.cookie.ajax.获取行内样式兼容写法.拖拽封装大合集. //url,data,type,timeout,success,error function ajax(options){ //- ...
- Serializable 和Parcelable 的区别
1.作用 Serializable的作用是为了保存对象的属性到本地文件.数据库.网络流.RMI(Remote Method Invocation)以方便数据传输,当然这种传输可以是程序内的也可以是两个 ...
- python,关于这个里边的私有方法(private)、保护方法(protected)、公开方法(public)
__foo__: 定义的是特殊方法,一般是系统定义名字 ,类似 __init__() 之类的. _foo: 以单下划线开头的表示的是 protected 类型的变量,即保护类型只能允许其本身与子类进行 ...
- thinkpad e系列 装win7过程
电脑买回来时是win8系统,但是卡顿的厉害,装成win7,win8装win7流程还是比较复杂,后来又装成xp,现在又改成win7,记录一下装win7 的过程 我是用光盘安装的系统 第一步:进入boss ...
- 关于Oracle数据库后台进程
为了最大限度地提高性能并适应许多用户,多进程Oracle数据库系统使用后台进程.后台进程将合并功能,否则这些功能将由运行于每个用户进程的多个数据库程序处理.后台进程异步执行I / O并监视其他Orac ...
- python 携带cookie获取页面内容
有时会遇到爬取的页面需要登录,这就要带上cookie了. 下面记录了几种携带cookie的方法 # coding=utf-8 import requests s = requests.Session( ...