> 目  录 

 > 笔  记 

Agent–Environment Interface

MDPs are meant to be a straightforward framing of the problem of learning from interaction to achieve a goal. The learner and decision maker is called the agent. The thing it interacts with, comprising everything outside the agent, is called the environment. These interact continually, the agent selecting actions and the environment responding to these actions and presenting new situations to the agent.1 The environment also gives rise to rewards, special numerical values that the agent seeks to maximize over time through its choice of actions.

More specifcally, the agent and environment interact at each of a sequence of discrete time steps, t = 0,1,2,.... At each time step t, the agent receives some representation of the environment's state, $S_{t}\in S$, where $S$ is the set of possible states, and on that basis selects an action, $A_{t}\in A(S_{t})$, where $A(S_{t})$ is the set of actions available in state $S_{t}$. One time step later, in part as a consequence of its action, the agent receives a numerical reward, $R_{t+1}\in R \subset \mathbb{R}$, and finds itself in a new state, $S_{t+1}$.

At each time step, the agent implements a mapping from states to probabilities of selecting each possible action. This mapping is called the agent's policy and is denoted $\pi_{t}(a|s)$ is the probability that $A_{t}=a$ if $S_{t}=s$. Reinforcement learning methods specify how the agent changes its policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total amount of reward it receives over the long run.

the actions are the choices made by the agent; the states are the basis for making the choices; and the rewards are the basis for evaluating the choices.

图1. agent-environment interaction in a MDP

马尔可夫性(Markov property): 如果state signal具有马尔科夫性,那么当前状态只跟上一状态有关,它包含了所有从过去经历中得到的信息。马尔可夫性对RL而言很重要,∵decisions和values通常都被认为是一个只跟当前state相关的函数。

MDP的动态性:$p(s',r|s,a)=Pr\left \{ S_{t}=s',R_{t}=r|S_{t-1}=s,A_{t-1}=a  \right \}$,

where $ \underset{s'\in S \ r\in R}{\sum \sum}p(s',r|s,a)=1 $, for all $s\in S$,  $a\in A(s)$.

基于the dynamics of the MDP, 我们可以很容易地得到状态转移概率(state-transition probabilities, $p(s'|s,a)$),state-action的期望回报(the expected rewards for state–action pairs, $r(s,a)$),以及state-action-next state的期望回报(the expected rewards for state–action-next state, $r(s,a,s')$)。

Goals and Rewards

agent的goal是以一个从environment传递给agent的reward signal的形式存在的。我们通过定义reward signal的值,可以实现跟agent的交流,告诉它what you want it to achieve, not how you want it achieved。

Agent的目标是最大化total reward。因此,最大化的不是immediate reward,而是cumulative reward in the long run。

Returns and Episodes

The return is the function of future rewards that the agent seeks to maximize (in expected value). return有多种形式,取决于task本身和是否希望对回报进行折扣。

Expected return: $G_{t}=R_{t+1}+R_{t+2}+...+R_{T}$, where T is a final time step。适合于episodic tasks。

Episodic tasks: each episode ends in the terminal state, followed by a reset to a standard starting state or a sample from a standard distribution of starting states.

Continuing tasks: the agent–environment interaction doesn’t break naturally into identifiable episodes, but goes on continually without limit.

Expected discounted return: $G_{t}=R_{t+1}+\gamma R_{t+2}+ \gamma ^{2}R_{t+3}+...=\sum_{k=0}^{\infty}\gamma ^{k}R_{t+k+1}$。其中,折扣率(discount rate, $\gamma$)决定了未来rewards的当前价值。适合于continuing tasks。

Policies and Value Functions

Value functions: functions of states (or state-action pairs) that estimate how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state). The notion of “how good” here is defined in terms of future rewards that can be expected, or, in terms of the expected return from that state (or state-action pair).

Policy: a mapping from states to probabilities of selecting each possible action. If the agent is following policy $\pi$ at time t, then $\pi(a|s)$ is the probability that $A_{t} = a$ if $S_{t} = s$.

the value function of a state s under a policy $\pi$: (i.e. the expected return when starting in s and following $\pi$ thereafter)

We call  the function $ v_{\pi}$ is the state-value function for policy $\pi$

the value of taking action a in state s under a policy $\pi$: (i.e. the expected return starting from s, taking the action a, and thereafter following policy $\pi$)

We call  $ q_{\pi}$ the action-value function for policy $\pi$

Bellman equation for $v_{\pi}$: It expresses a relationship between the value of a state and the values of its successor states.

      

Optimal Policies and Optimal Value Functions

Value functions define a partial ordering over policies. $\pi> \pi'$ if and only if $v_{\pi}(s) > v_{\pi'}(s)$, for all $s \in S$. The optimal value functions assign to each state, or state–action pair, the largest expected return achievable by any policy.

Optimal policy $\pi_{*}$:A policy whose value functions are optimal. There is always at least one (can be many) policy that is better than or equal to all other policies.

Optimal state-value function:

Optimal action-value function:

用$v_{*}$来表示$q_{*}$:

Any policy that is greedy with respect to the optimal value functions must be an optimal policy. The Bellman optimality equations are special consistency conditions that the optimal value functions must satisfy and that can, in principle, be solved for the optimal value functions.

Bellman optimality equatio for $v_{*}$

Bellman optimality equatiofor $q_{*}$

Backup diagrams for $v_{*}$ and $q_{*}$:

Reinforcement Learning: An Introduction读书笔记(3)--finite MDPs的更多相关文章

  1. Reinforcement Learning: An Introduction读书笔记(4)--动态规划

     > 目  录 <  Dynamic programming Policy Evaluation (Prediction) Policy Improvement Policy Iterat ...

  2. Reinforcement Learning: An Introduction读书笔记(1)--Introduction

      > 目  录 <   learning & intelligence 的基本思想 RL的定义.特点.四要素 与其他learning methods.evolutionary m ...

  3. Reinforcement Learning: An Introduction读书笔记(2)--多臂机

     > 目  录 <  k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...

  4. 《Machine Learning Yearing》读书笔记

    ——深度学习的建模.调参思路整合. 写在前面 最近偶尔从师兄那里获取到了吴恩达教授的新书<Machine Learning Yearing>(手稿),该书主要分享了神经网络建模.训练.调节 ...

  5. Machine Learning for hackers读书笔记(六)正则化:文本回归

    data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...

  6. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  7. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  8. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

  9. Machine Learning for hackers读书笔记(十)KNN:推荐系统

    #一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...

随机推荐

  1. 大叔学ML第一:梯度下降

    目录 原理 实践一:求\(y = x^2 - 4x + 1\)的最小值 实践二:求\(z = x^2 + y^2 + 5\)的最小值 问答时间 原理 梯度下降是一个很常见的通过迭代求解函数极值的方法, ...

  2. JVM垃圾收集器与内存分配策略(一)

    在前面的Java自动内存管理机制(上)和Java自动内存管理机制(下)中介绍了关于JVM的一些基础知识,包括运行时数据区域划分和一些简单的参数配置,而其中也谈到了GC,但是没有深入了解,所以这里开始简 ...

  3. Akka-CQRS(1)- Write-side, Persisting event sources:CQRS存写端操作方式

    上篇我们提到CQRS是一种读写分离式高并发.大流量数据录入体系,其中存写部分是通过event-sourcing+akka-persistence实现的.也可以这样理解:event-sourcing(事 ...

  4. SpringBoot 通过 Exploded Archives 的方式部署

    之前部署 SpringBoot 一直是用可执行 jar 的方式. java -jar codergroup-1.0.0.jar 就可以启动项目,为了能在后台运行,通常我们会使用这行命令 nohup j ...

  5. wordpress背景添加跟随鼠标动态线条特效

    今天看到别人的博客,在鼠标移动背景时会出现线条动态特效 感觉挺有意思的,还有另一种,在背景点击时会跳出字符特意去找了方法,以为需要添加代码的,结果只要安装个插件就可以了,所以说wordpress就是方 ...

  6. 每天学点SpringCloud(二):服务注册与发现Eureka

    相信看过 每天学点SpringCloud(一):简单服务提供者消费者调用的同学都发现了,在最后消费者调用提供者的时候把提供者的地址硬编码在了代码中,这样的方式肯定是不行的,今天,我们就是要Eureka ...

  7. requests 处理异常错误 requests.exceptions.ConnectionError HTTPSConnectionPool [Errno 10060]

    使用python requests模块调用vmallarg.vmall.com接口API时报如下错误: requests.exceptions.ConnectionError: HTTPSConnec ...

  8. csv与xlsx导出

    一.csv与xlsx格式基本介绍       csv即comma seperate values - 逗号分隔值,文件以纯文本形式来存储表格数据,它可以由任意数目的记录组成,记录之间通过某种换行符来分 ...

  9. 改善JAVA代码01:考虑静态工厂方法代替构造器

    前言 系列文章:[传送门]   每次开始新的一本书,我都会很开心.新书新心情. 正文 静态工厂方法代替构造器 说起这个,好多可以念叨的.做了一年多的项目,慢慢也有感触. 说起构造器 大家很明白,构造器 ...

  10. struts2--使用<s:token></s:token>标签防止重复提交

    取个小例子:这是网页: <body> <s:actionerror/> <s:form action="LoginAction" method=&qu ...