codeforces431C
k-Tree
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.
A k-tree is an infinite rooted tree where:
- each vertex has exactly k children;
- each edge has some weight;
- if we look at the edges that goes from some vertex to its children (exactly kedges), then their weights will equal 1, 2, 3, ..., k.
The picture below shows a part of a 3-tree.
As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".
Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).
Input
A single line contains three space-separated integers: n, k and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).
Output
Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
Examples
3 3 2
3
3 3 3
1
4 3 2
6
4 5 2
7
题意:给出K-Tree定义,每个结点都有恰好K个孩子,这棵树无限增长。每个节点到它K个孩子的K条边的权重刚好是1,2,3...,K(看图应该也看得明白)
现在问有多少条路径,使得从根节点出发到达某个结点,经过的边权重之和恰好为n,并且经过的边至少有一条权重不小于d。
sol:dp应该看得出来,状态也很好构建dp[i][j][0,1]表示到第i层和为j是否有不小于d的边,因为n,k太小,毫无思考的n3dp直接上
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Mod=,N=;
int n,K,D;
int dp[N][N][];
int main()
{
int i,j,k;
R(n); R(K); R(D);
dp[][][]=;
for(i=;i<=n;i++)
{
for(j=i-;j<n;j++)
{
for(k=;j+k<=n&&k<=K;k++)
{
dp[i][j+k][]+=1ll*dp[i-][j][]%Mod;
dp[i][j+k][]-=(dp[i][j+k][]>=Mod)?Mod:;
if(k>=D)
{
dp[i][j+k][]+=1ll*dp[i-][j][]%Mod;
dp[i][j+k][]-=(dp[i][j+k][]>=Mod)?Mod:;
}
else
{
dp[i][j+k][]+=1ll*dp[i-][j][]%Mod;
dp[i][j+k][]-=(dp[i][j+k][]>=Mod)?Mod:;
}
}
}
}
int ans=;
for(i=;i<=n;i++)
{
ans+=dp[i][n][];
ans-=(ans>=Mod)?Mod:;
}
Wl(ans);
return ;
}
/*
input
3 3 2
output
3 input
3 3 3
output
1 input
4 3 2
output
6 input
4 5 2
output
7
*/
codeforces431C的更多相关文章
- 「专题训练」k-Tree(CodeForces Round #247 Div.2 C)
题意与分析(Codeforces-431C) 题意是这样的:给出K-Tree--一个无限增长的树,它的每个结点都恰有\(K\)个孩子,每个节点到它\(K\)个孩子的\(K\)条边的权重各为\(1,2, ...
随机推荐
- 洛谷 P1596 [USACO10OCT]湖计数Lake Counting
题目链接 https://www.luogu.org/problemnew/show/P1596 题目描述 Due to recent rains, water has pooled in vario ...
- 基于注解处理器开发自动生成getter和setter方法的插件
昨天无意中,逛到了lombok的网站,并看到了首页的5分钟视频,视频中的作者只是在实体类中写了几个字段,就可以自动编译为含setter.getter.toString()等方法的class文件.看着挺 ...
- 区别:ASP.NET MVC的Model、DTO、Command
最近在用CQRS架构模式做项目,有些感悟,记录下来. 问题的描述(大家是否也存在过类似的情况呢?): 从刚开始时项目中没有区分这3种对象,所以导致了很多职责公用,然后就乱了,比如Command一部分职 ...
- Wechart 饼图
预览 Preview | Usage Source | Pie Source | Tutorial Wechart by Cax Cax 众所周知 Cax 既能开发游戏.又能开发图表.本文将从饼图开始 ...
- 利用tushare进行对兴业银行股价的爬取,并使用numpy进行分析
import sysimport tushare as tsimport numpy as npdata=ts.get_h_data('601066')print(data)#读出兴业银行7列数据da ...
- Django 中的Form、ModelForm
一.ModelForm 源码 class ModelForm(BaseModelForm, metaclass=ModelFormMetaclass): pass def modelform_fact ...
- 08-webpack的介绍
在这里我仅仅的是对webpack做个讲解,webpack这个工具非常强大,解决了我们前端很繁琐的一些工具流程繁琐的事情.如果感兴趣的同学,简易还是看官网吧. 中文链接地址:https://www.we ...
- KubeCon CloudNativeCon China 2019
KubeCon CloudNativeCon China 2019 - LF Asia, LLChttps://events.linuxfoundation.cn/events/kubecon-clo ...
- React Native之获取通讯录信息并实现类通讯录列表(ios android)
React Native之获取通讯录信息并实现类通讯录列表(ios android) 一,需求分析 1,获取通讯录信息,筛选出通讯录里有多少好友在使用某个应用. 2,获取通讯录信息,实现类通讯录,可拨 ...
- 994.Contiguous Array 邻近数组
描述 Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and ...