【XSY2774】学习 带花树
题目描述
给你一个图,求最大匹配。
边的描述方式很特殊,就是一次告诉你\(c_i\)个点:\(d_1,d_2,\ldots,d_{c_i}\),表示这些点两两之间都有连边,也就是说,这是一个团。总共有\(m\)个团。
记\(s=\sum_{i=1}^mc_i\)。
\(n,m,s\leq 3000\)
题解
直接跑带花树的话时间复杂度是\(O(ns^2\alpha(n))\)的,显然会TLE。
假设每个\(c_i\)都是偶数(如果是奇数就让最后一个点像前面的点连边,然后把这个点去掉)。
对于每一个团,添加\(k=c_i\)个辅助点,按以下方式连边(红色的为原来的店,蓝色的为辅助点):
易证有\(x\)个红色点和蓝色点匹配时,最大匹配是\(\lfloor\frac{x+k}{2}\rfloor\)。
(可以先选一个红色点匹配,然后顺时针确定其他红色点,对这个红色点相邻的蓝色点到上一个红色点相邻的蓝色点之间蓝色点个数分类讨论来决定这个红色点连向那个蓝色点。)
对于每个团,令\(k\)为偶数,然后在跑完带花树后把答案减掉\(\sum k/2\)。
这样建图的边的个数是\(O(s)\)的。
时间复杂度:\(O(ns\alpha(n))\)
(显然\(O(n\alpha(n))\)的并查集常数很大会被卡常。)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
s=c-'0';
while((c=getchar())>='0'&&c<='9')
s=s*10+c-'0';
return s;
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
struct graph
{
int h[6010];
int v[10000010];
int t[10000010];
int n;
void clear()
{
memset(h,0,sizeof h);
n=0;
}
void add(int x,int y)
{
n++;
v[n]=y;
t[n]=h[x];
h[x]=n;
}
};
graph g;
int n,m;
int ans;
int c[6010];
int f[6010];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int link[6010];
int d[6010];
int b[6010];
int q[6010];
int pre[6010];
int head,tail;
void aug(int x)
{
for(int y=pre[x];x;x=pre[y],y=pre[x])
{
link[x]=y;
pre[y]=link[y];
link[y]=x;
}
}
int vis[6010];
int ti=0;
int getlca(int x,int y)
{
ti++;
for(x=find(x),y=find(y);;swap(x,y))
if(x)
{
if(vis[x]==ti)
return x;
vis[x]=ti;
x=find(pre[link[x]]);
}
return 0;
}
void gao(int x,int y,int lca)
{
for(;find(x)!=lca;x=pre[y])
{
pre[x]=y;
y=link[x];
f[x]=lca;
f[y]=lca;
if(d[y])
{
d[y]=0;
q[++tail]=y;
}
}
}
int num;
int bfs(int x)
{
memset(b,0,sizeof b);
for(int i=1;i<=num;i++)
f[i]=i;
head=1,tail=0;
d[x]=0;
b[x]=1;
q[++tail]=x;
int v;
while(tail>=head)
{
x=q[head++];
for(int i=g.h[x];i;i=g.t[i])
if(find(v=g.v[i])==find(x))
continue;
else
{
if(!b[v])
{
pre[v]=x;
b[v]=1;
if(!link[v])
{
aug(v);
return 1;
}
else
{
b[link[v]]=1;
d[v]=1;
d[link[v]]=0;
q[++tail]=link[v];
}
}
else
{
if(!d[v])
{
int lca=getlca(x,v);
gao(x,v,lca);
gao(v,x,lca);
}
}
}
}
return 0;
}
void solve()
{
num=n;
g.clear();
int x,y;
ans=0;
for(int i=1;i<=m;i++)
{
scanf("%d",&x);
for(int j=1;j<=x;j++)
scanf("%d",&c[j]);
sort(c+1,c+x+1);
x=unique(c+1,c+x+1)-c-1;
if(x&1)
{
for(int j=1;j<x;j++)
{
g.add(c[j],c[x]);
g.add(c[x],c[j]);
}
x--;
}
for(int j=1;j<=x;j++)
{
g.add(num+j,num+j%x+1);
g.add(num+j%x+1,num+j);
}
for(int j=1;j<=x;j++)
{
g.add(c[j],num+j);
g.add(num+j,c[j]);
g.add(c[j],num+j%x+1);
g.add(num+j%x+1,c[j]);
}
ans-=x/2;
num+=x;
}
memset(link,0,sizeof link);
for(int i=1;i<=num;i++)
if(!link[i])
{
if(bfs(i))
ans++;
}
printf("%d\n",ans);
}
int main()
{
open("c");
while(~scanf("%d%d",&n,&m)&&(n||m))
solve();
return 0;
}
【XSY2774】学习 带花树的更多相关文章
- URAL 1099. Work Scheduling (一般图匹配带花树)
1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...
- HDU 4687 Boke and Tsukkomi (一般图匹配带花树)
Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Othe ...
- P6113-[模板]一般图最大匹配【带花树】
正题 题目链接:https://www.luogu.com.cn/problem/P6113 题目大意 给出一张无向图,求最大匹配. \(1\leq n\leq 10^3,1\leq m\leq 5\ ...
- [转]带花树,Edmonds's matching algorithm,一般图最大匹配
看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- 【Learning】带花树——一般图最大匹配
一般图最大匹配--带花树 问题 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. 这个问题的退化版本就是二分图最大匹配. 由于二分图中不存在奇环,偶环对最大匹配并无 ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- [BZOJ]4405: [wc2016]挑战NPC(带花树)
带花树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...
- HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】
<题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...
随机推荐
- IIS 日志导入到数据库的方法
使用微软Log Parser 执行 logparser "SELECT * FROM d:\iislogs\u_ex18071705.log TO myTableName" -o: ...
- flask异常处理
对于异常,通常可以分为两类:一类是可以预知的异常,我们通常会用try...except....捕捉,第二类是未知的error,我们是无法预知的. try: code block except A: e ...
- 剑指offer--4.重建二叉树
题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2, ...
- Minesweeper
你玩过扫雷吗?这个可爱的小游戏带有一个我们记不住名字的操作系统.游戏的目标是找到所有地雷在M x N场中的位置.游戏在一个正方形中显示一个数字,它告诉你在这个正方形附近有 多少个地雷.每个方块最多有八 ...
- 把玩Alpine linux(一):安装
导读 Alpine Linux是一个面向安全应用的轻量级Linux发行版.它采用了musl libc和busybox以减小系统的体积和运行时资源消耗,同时还提供了自己的包管理工具apk.Alpine ...
- Django 2.0 学习
Django django是基于MTV结构的WEB框架 Model 数据库操作 Template 模版文件 View 业务处理 在Python中安装django 2.0 1 直接安装 pip inst ...
- rbac权限+中间件
1.权限组件rbac 1.什么是权限 1 项目与应用 2 什么是权限? 一个包含正则表达式url就是一个权限 who what how ---------->True or Flase 2.版本 ...
- PAT L2-014 列车调度
https://pintia.cn/problem-sets/994805046380707840/problems/994805063166312448 火车站的列车调度铁轨的结构如下图所示. 两端 ...
- Jenkins+Docker自动化集成环境搭
关于Docker Docker 简介 Docker现在是Github社区最火的项目之一,Docker是个容器,或许你听过lxc,你可能知道Tomcat这个Web容器,容器是什么概念,意会就好.问个问题 ...
- Jquery ajax传递xml方式在ie8下兼容问题
主要问题就是ie8把xml格式在打开的时候转换成了string,我们只用把其转换回xml就可以了. $.ajax({ type:’GET’, url:’list.php?pagenow=’+count ...