Introduction

Among simulation engineers, it is well accepted that the solution of a PDE can be envisioned as the following three general steps (actually, this was also my premature understanding during the early era of my study on numerical simulation).

  1. Expand the unknown function to be solved by a set of basis functions.
  2. Multiply both sides of the equation by a set of test functions and integrate the product over the solution domain.
  3. With the application of integration by parts, the space dimension of the integral is reduced by 1 and the appeared boundary integral can be used to apply predefined boundary conditions.

The formulation thus obtained, which discretizes the original continuous problem, is called weak form or variational problem, from which the weak solution results. At first glance, the above envisioned procedures could be applicable to any PDEs, at least, discretized system of equations can be constructed and system matrix can be filled. However, without a careful and crystal clear proof about the existence and uniqueness of the solution for the weak form or variational problem, the results can never be relied on - after all, any operation on the computer can produce something, usually huge amount of data, which is either truth or rubbish. What kind of meaning will be assigned to it and how much value we can extract from it depend on the wisdom, rationality and rigorousness of the human operator.

In this post, the proof for the existence and uniqueness of the solution of the following variational problem will be presented, which is the corner stone of numerical schemes such as the finite element method and boundary element method (BEM).

Let \(H_1\) and \(H_2\) be two Hilbert spaces, \(a(\cdot, \cdot): H_1 \times H_2 \rightarrow \mathbb{K}\) be a sesquilinear form with \(\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}\) (Note: when \(\mathbb{K} = \mathbb{R}\), \(a(\cdot, \cdot)\) is a bilinear form), \(l(\cdot): H_2 \rightarrow \mathbb{K}\) be a bounded linear functional on \(H_2\). The solution \(u \in H_1\) of the equation below will be sought under an arbitrarily given \(v \in H_2\):

\[
\begin{equation}
\label{eq:variational-problem}
a(u, v) = l(v) \quad (\forall v \in H_2)
\end{equation}
\]

In this post, we'll first show that the existence and uniqueness of \(u\) along with a priori estimate of its norm can be obtained thanks to the inf-sup condition. Secondly, by introducing the famous Lax-Milgram Lemma, the inf-sup condition can be relaxed to H-ellipticity condition which still preserves the solvability of the variational problem.

inf-sup condition

Definition (inf-sup condition) The continuous sesquilinear form \(a(\cdot, \cdot)\) satisfies the in-sup condition if there exists a constant \(\gamma > 0\), such that

\[
\begin{align}
\label{eq:inf-sup-condition-a}
\inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} & \geq \gamma > 0, \tag{a} \\
\label{eq:inf-sup-condition-b}
\forall v \in H_2 \backslash \{0\}: \sup_{u \in H_1 \backslash \{0\}} \abs{a(u, v)} &> 0. \tag{b}
\end{align}
\]

Remark

  1. For (a), first fix \(u \in H_1 \backslash \{0\}\), then vary \(v \in H_2 \backslash \{0\}\) and take the supremum of \(\frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}}\). Let \(A \in L(H_1, H_2')\) be the associated operator of \(a(\cdot, \cdot)\) satisfying \((Au, v) = a(u, v) \; (\forall u \in H_1, v \in H_2)\). Let \(\phi_u := Au \in H_2'\). Because \(u\) is already fixed so is its norm \(\norm{u}_{H_1}\), the supremum can be considered as a measure of the norm \(\norm{\phi_u}_{H_2'}\).
  2. For (b), \(v\) is firstly fixed and \(u\) is then varied. Because the supremum of the absolute value of the sesquilinear form should be strictly larger than 0, \(\phi_u\) cannot be a zero operator.

Theorem (Existence and uniqueness) The condition that the sesquilinear form \(a(\cdot, \cdot)\) satisfies the inf-sup condition is equivalent to the following condition: for all \(l \in H_2'\), the variational problem \eqref{eq:variational-problem} has a unique solution \(u \in H_1\), which satisfies the priori estimate

\[
\begin{equation}
\label{eq:priori-estimate}
\norm{u}_{H_1} \leq \frac{1}{\gamma} \norm{l}_{H_2'}.
\end{equation}
\]

Proof: A. Given the inf-sup condition, we prove the existence and uniqueness of the solution and the priori estimate.

  1. We'll show the associated operator \(A: H_1 \rightarrow H_2'\) of \(a(\cdot, \cdot)\) is continuous.

    Because \(a(\cdot, \cdot)\) is continuous, we have

    \[
    \abs{a(u, v)} \leq \norm{a} \norm{u}_{H_1} \norm{v}_{H_2} \quad (\forall u \in H_1, v \in H_2).
    \]

    Let \(\phi_u := Au = a(u, \cdot)\), then

    \[
    \abs{\phi_u(v)} = \abs{a(u, v)} \leq \norm{a} \norm{u}_{H_1} \norm{v}_{H_2} \quad (\forall u \in H_1, v \in H_2).
    \]

    Because \(u\) is given and fixed in \(\phi_u\), we define the constant \(C(a, u) := \norm{a} \norm{u}_{H_1}\), therefore \(\phi_u\) is bounded:

    \[
    \abs{\phi_u(v)} \leq C(a, u) \norm{v}_{H_2} \quad (\forall v \in H_2).
    \]

    It should be noted that when \(\phi_u\) is applied to \(v \in H_2\), a complex conjugate operation must be applied first to \(v\) due to the definition of \(a(\cdot, \cdot)\) which is complex conjugate linear with respect to its second argument. Therefore, \(\phi_u\) is a bounded complex conjugate linear operator from \(H_1\) to \(H_2^*\), where \(H_2^*\) is the anti-dual space of \(H_2\). Because the only difference between \(H_2^*\) and \(H_2'\) is a complex conjugate, the two spaces can be identified isometrically \(H_2^* \cong H_2'\). In the following, we use \(H_2'\) replacing \(H_2^*\) and let \(\phi_u\) inherently includes a complex conjugate operation, which makes \(\phi_u\) a bounded linear operator in \(H_2'\). According to this analysis, we know the operator \(A\) really maps \(u\) to an element in \(H_2'\).

    Then the norm of \(\phi_u\) in \(H_2'\) is

    \[
    \norm{\phi_u}_{H_2'} = \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{\phi_u(v)}}{\norm{v}_{H_2}} \leq \norm{a} \norm{u}_{H_1} < \infty \quad (\forall u \in H_1),
    \]

    based on which the operator \(A: H_1 \rightarrow H_2'\) is continuous.

  2. Prove the image of \(H_1\) under \(A\) is closed in \(H_2'\). The basic idea is that the closeness of \(A(H_1)\) in \(H_2'\) can be proved by showing that any Cauchy sequence in \(A(H_1)\) is convergent in \(A(H_1)\).

    According to (a) of the inf-sup condition

    \[
    \forall u \in H_1 \backslash \{0\}: \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} \geq \gamma > 0,
    \]

    we have the equivalent

    \[
    \forall u \in H_1 \backslash \{0\}: \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{Au(v)}}{\norm{v}_{H_2}} \geq \norm{u}_{H_1} \gamma.
    \]

    When \(u = 0\), the equality in the above holds. Therefore,

    \[
    \forall u \in H_1: \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{Au(v)}}{\norm{v}_{H_2}} \geq \norm{u}_{H_1} \gamma.
    \]

    Let \((y_n)_{n \in \mathbb{N}}\) be a Cauchy sequence in \(A(H_1)\) and \((x_n)_{n \in \mathbb{N}}\) be the corresponding sequence in \(H_1\) such that \(A(x_n) = y_n\). For all \(\varepsilon > 0\), there exists a larger enough \(N_0 \in \mathbb{N}\) such that when \(m, n > N_0\),

    \[
    \varepsilon > \norm{y_m - y_n}_{H_2'} = \norm{A(x_m - x_n)}_{H_2'} \geq \norm{x_m - x_n}_{H_1} \gamma.
    \]

    From this we know that \((x_n)_{n \in \mathbb{N}}\) is also a Cauchy sequence in \(H_1\). Because \(H_1\) is a Hilbert space, there exists an \(x \in H_1\) such that

    \[
    \lim_{n \rightarrow \infty} \norm{x_n - x}_{H_1} = 0.
    \]

    According to step 1, \(A\) is a continuous linear operator, so we have

    \[
    \lim_{n \rightarrow \infty} \norm{A(x_n) - A(x)}_{H_2'} \leq \lim_{n \rightarrow \infty} \norm{A}_{H_2' \leftarrow H_1} \norm{x_n - x}_{H_1} = 0.
    \]

    Because \(A(x) \in A(H_1)\), any Cauchy sequence in \(A(H_1)\) is also convergent in \(A(H_1)\) and \(A(H_1)\) is closed.

  3. Prove \(A(H_1) = H_2'\) and the solution for the variational problem \eqref{eq:variational-problem} exists.

    Assume \(A(H_1)\) is a proper subset of \(H_2'\). Then there exists a non-zero \(y_0 \in A(H_1)^{\perp}\). Due to Riesz representation theorem, there exists \(y_0' \in (A(H_1)')\) such that

    \[
    \forall y \in A(H_1): \langle y_0', y \rangle_{A(H_1)' \times A(H_1)} = (y_0, y)_{H_2'} \; \text{and} \; \norm{y_0'}_{H_2''} = \norm{y_0}_{H_2'},
    \]

    where \(\langle \cdot, \cdot \rangle_{A(H_1)' \times A(H_1)}\) is the dual pairing. It can be seen that \(y_0'\) is a non-zero functional, which operates on \(A(H_1)\) and evaluates to zero. In addition, because \(A(H_1)\) is closed in \(H_2'\) according to the proof in step 2, Hahn-Banach theorem can be used to extend the domain of \(y_0'\) from \(A(H_1)\) to the whole space \(H_2'\), i.e. there exists a non-zero \(\tilde{y}_0' \in H_2''\) such that \(\tilde{y}_0'(y) = 0\) for all \(y \in A(H_1)\).

    Further because \(H_2\) is a Hilbert space, it is reflexive: \(H_2 \cong H_2''\), then \(\tilde{y}_0' \in H_2\) and for all \(y \in A(H_1)\)
    \[
    \tilde{y}_0' (y) = y(\tilde{y}_0') = (Au) (\tilde{y}_0') = a(u, \tilde{y}_0') = 0 \quad (u \in H_1, Au = y).
    \]
    Because \(y\) is arbitrarily selected in the image of \(A\), \(u\) can also vary arbitrarily in \(H_1\). Hence we can conclude that there exists a non-zero \(\tilde{y}_0' \in H_2\) such that
    \[
    \sup_{u \in H_1 \backslash \{0\}} \abs{a(u, \tilde{y}_0')} = 0,
    \]
    which contradicts (b) of the inf-sup condition. So we've proved \(A(H_1) = H_2'\) and the solution of the variational problem \eqref{eq:variational-problem} exists.

  4. Prove \(A \in L(H_1, H_2')\) is injective and the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2'\).
    For all \(l \in H_2'\), there exists a \(u \in H_1\) such that \(Au = l\) according to the proof in step 3. Assume there are two such solutions, namely, \(u_1\) and \(u_2\) being different, we have the following according to step 2
    \[
    \norm{Au_1 - Au_2}_{H_2'} = \norm{A(u_1 - u_2)}_{H_2'} \geq \norm{u_1 - u_2}_{H_1} \gamma \quad (u_1 - u_2 \in H_1 \backslash \{0\}),
    \]
    which contradicts \(\norm{Au_1 - Au_2}_{H_2'} = 0\). Therefore, \(A \in L(H_1, H_2')\) is injective and the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2'\).

  5. Prove the priori estimate.
    For all \(l \in H_2'\), there exists a unique \(u \in H_1\) such that \(Au = l\). According to step 2,
    \[
    \norm{l}_{H_2'} = \norm{Au}_{H_2'} \geq \norm{u}_{H_1} \gamma,
    \]
    which proves the priori estimate.

B. Given the existence and uniqueness of the solution and prove the inf-sup condition \eqref{eq:inf-sup-condition-a} and \eqref{eq:inf-sup-condition-b}.

  1. Prove \eqref{eq:inf-sup-condition-b} of the inf-sup condition.

    If the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2\), associated operator \(A \in L(H_1, H_2')\) of \(a(\cdot, \cdot)\) is bijective.

    If (b) of the inf-sup condition does not hold, there must exists \(y_0 \in H_2 \backslash \{0\}\) such that
    \[
    \sup_{u \in H_1 \backslash \{0\}} = \abs{a(u, y_0)} = 0 \Leftrightarrow \forall u \in H_1, a(u, y_0) = (Au)(y_0) = 0.
    \]
    Because \(H_2\) is reflexive, \(y_0\) can be considered in \(H_2''\):
    \[
    (Au)(y_0) = y_0(Au) = 0 \quad (\forall u \in H_1).
    \]
    Then from Riesz representation theorem, there exists \(\tilde{y}_0 \in H_2'\) corresponding to \(y_0 \in H_2''\) such that
    \[
    y_0(Au) = (\tilde{y}_0, Au)_{H_2'} = 0 \quad (\forall u \in H_1).
    \]
    Therefore, \(A(H_1)^{\perp} \neq \{0\}\), which contradicts the fact that \(A\) is bijective.

  2. Prove \eqref{eq:inf-sup-condition-a} of the inf-sup condition.
    \[
    \begin{aligned}
    \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} &= \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle Au, v \rangle_{H_2' \times H_2}}{\norm{u}_{H_1} \norm{v}_{H_2}} \\
    &= \inf_{w \in H_2' \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle w, v \rangle_{H_2' \times H_2}}{\norm{A^{-1} w}_{H_1} \norm{v}_{H_2}} \quad (w \in H_2', w = Au) \\
    &\geq \inf_{w \in H_2' \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle w, v \rangle_{H_2' \times H_2}}{\norm{A^{-1}}_{H_2 \leftarrow H_2'} \norm{w}_{H_2'} \norm{v}_{H_2}}
    \end{aligned}
    \]
    For the Hilbert space \(H_2\), there exists an isometry \(J_{H_2}: H_2 \rightarrow H_2'\). Let \(\tilde{w} \in H_2\) and \(J_{H_2} (\tilde{w}) = w\), we further have
    \[
    \begin{aligned}
    \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} &\geq \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle J_{H_2} \tilde{w}, v \rangle_{H_2' \times H_2}}{\norm{J_{H_2} \tilde{w}}_{H_2'} \norm{v}_{H_2}} \quad (\text{Let $\norm{A^{-1}}_{H_2 \leftarrow H_2'} = \gamma^{-1}$.}) \\
    &= \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \frac{1}{\norm{\tilde{w}}_{H_2}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle J_{H_2} \tilde{w}, v \rangle_{H_2' \times H_2}}{\norm{v}_{H_2}} \quad (\because \norm{J_{H_2} \tilde{w}}_{H_2'} = \norm{\tilde{w}}_{H_2}) \\
    &= \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \frac{\norm{J_{H_2} \tilde{w}}_{H_2'}}{\norm{\tilde{w}}_{H_2}} \\
    &= \gamma
    \end{aligned}.
    \]

H-ellipticity condition and Lax-Milgram Lemma

Definition (H-ellipticity) Let \(H_1 = H_2 = H\) is reflexive Banach space, \(a: H \times H \rightarrow \mathbb{C}\) be a sesquilinear form. \(a(\cdot, \cdot)\) is H-elliptic if there exits \(\gamma > 0\) and \(\sigma \in \mathbb{C}\) with \(\abs{\sigma} = 1\), such that
\[
\forall u \in H: \Re(\sigma a(u, u)) \geq \gamma \norm{u}_H^2.
\]
Lemma (Lax-Milgram) Let \(H\) be a Hilbert space. The sesquilinear form \(a: H \times H \rightarrow \mathbb{C}\) is H-elliptic. Then the inf-sup condition holds.

Proof: From the H-ellipticity condition for \(a(\cdot, \cdot)\), we have
\[
\gamma \norm{u}_H^2 \leq \Re(\sigma a(u, u)) \leq \abs{\Re(\sigma a(u, u))} \leq \abs{\sigma a(u, u)} = \abs{\sigma} \abs{a(u, u)} = \abs{a(u, u)}.
\]
Substitute this inequality into the LHS of \eqref{eq:inf-sup-condition-a} of the inf-sup condition while selecting \(v\) to be equal to \(u\),
\[
\inf_{u \in H \backslash \{0\}} \sup_{v \in H \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_H \norm{v}_H} \geq \inf_{u \in H \backslash \{0\}} \frac{\gamma \norm{u}_H^2}{\norm{u}_H \norm{u}_H} = \gamma > 0.
\]
This proves \eqref{eq:inf-sup-condition-a} of the inf-sup condition.

To prove \eqref{eq:inf-sup-condition-b} of the inf-sup condition, given an arbitrary \(v \in H \backslash \{0\}\) and let \(u = v\), we have
\[
\sup_{u \in H \backslash \{0\}} \abs{a(u, v)} \geq \abs{a(v, v)} \geq \gamma \norm{v}_H > 0.
\]
According to Lax-Milgram Lemma, we can still have the existence, uniqueness and priori estimate for the solution of the variation problem from the H-elliptic condition on \(a(\cdot, \cdot)\).

Summary

In this post, we present conditions and theorems along with their proofs, which ensures the existence and uniqueness for the solution of the general variational problem \(a(u, v) = l(v) \; (\forall l \in H_2)\). The underlying condition is the inf-sup condition. During the proof, the application of Hahn-Banach theorem is a key step for proving that the associated operator \(A \in L(H_1, H_2')\) of \(a(\cdot, \cdot)\) is surjective. Because of Lax-Milgram Lemma, the inf-sup condition can be relaxed to H-ellipticity condition.

Theorems for existence and uniqueness of variational problem的更多相关文章

  1. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  2. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  3. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  4. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  5. 海量数据挖掘MMDS week1: Link Analysis - PageRank

    http://blog.csdn.net/pipisorry/article/details/48579435 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  6. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  7. 将Emacs Org mode用于GTD任务管理

    在上一篇日志中,我简要介绍了如何围绕Emacs Org mode构建个人任务管理系统的基本思路与方法.因为Org mode体系庞大.功能繁杂,本文仅以提纲契领的方式介绍不同环节在Org mode中的操 ...

  8. 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data

    目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...

  9. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

随机推荐

  1. HDU contest808 ACM多校第7场 Problem - 1008: Traffic Network in Numazu

    首先嘚瑟一下这场比赛的排名:59 (第一次看到这么多 √ emmmm) 好了进入正文QAQ ...这道题啊,思路很清晰啊. 首先你看到树上路径边权和,然后还带修改,不是显然可以想到 树剖+线段树 维护 ...

  2. tomcat apr 部署

    背景 这还是为了高并发的事,网上说的天花乱坠的,加了apr怎么怎么好,我加了,扯淡.就是吹牛用.我还是认为,性能问题要考设计逻辑和代码解决,这些都是锦上添花的. 步骤 1 windows 部署简单,虽 ...

  3. <TCP/IP>ICMP报文的分类

    Internet控制报文协议,即为ICMP(Internet Control Message Protocal),用于主机,路由器之间传递信息,其目的是让我们能够检测网路的连线状况﹐也能确保连线的准确 ...

  4. csrfguard3.1 部署笔记

    1:git clone 导入csrfguard 2:点击菜单栏View->Tool  Windows->Maven projects 3:Lifecycle clean build 4:t ...

  5. vmware Harbor 复制功能试用

    vmware Harbor 复制功能试用 Harbor基于策略的Docker镜像复制功能,可在不同的数据中心.不同的运行环境之间同步镜像,并提供友好的管理界面,大大简化了实际运维中的镜像管理工作. 功 ...

  6. CF D. One-Dimensional Battle Ships

    一个set水 + 区间判断个数问题.... #include<iostream> #include<cstdio> #include<cstring> #inclu ...

  7. [PHP]curl上传多文件

    码一下curl上传多文件的行 5.5之前版本的写法 $file = array( 'pic[0]'=>"@E:\\wwwroot\\10003\\temp_56.ini;type=te ...

  8. TCP和UDP的对比

    UDP #面向报文 UDP 是一个面向报文(报文可以理解为一段段的数据)的协议.意思就是 UDP 只是报文的搬运工,不会对报文进行任何拆分和拼接操作. 具体来说 在发送端,应用层将数据传递给传输层的 ...

  9. python基础教程(第二版)

    开始学习python,根据Python基础教程,把里面相关的基础章节写成对应的.py文件 下面是github上的链接 python基础第1章基础 python基础第2章序列和元组 python基础第3 ...

  10. Confluence 6 在数据源连接中启用校验查询

    确定 Confluence 在数据库连接池中校验数据库连接: 停止 Confluence. 编辑 <installation-directory>/conf/server.xml 文件(或 ...