MT【277】华中科技大学理科实验班选拔之三次方程
(2015华中科技大学理科实验班选拔)
已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.
(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数,求$c$变化时$x_3-x_1$的取值范围.
(2)若三个实数根为$a,b,c$,求$a,b,c$
分析:
$$\begin{cases}
x_1+x_2+x_3&=-a\\
x_1x_2+x_2x_3+x_3x_1&=b\\
x_1x_2x_3&=-c
\end{cases}$$
为方便起见记$x_2=t$
$(x_3-x_1)^2$
$=(x_3+x_1)^2-4x_1x_3$
$=(-a-t)^2+\dfrac{4c}{t}$
$=(-a-t)^2-\dfrac{4(t^3+at^2+bt)}{t}$
$=-3t^2-2at+a^2-4b$
又$(x^3+ax^2+bx+c)'=3x^2+2ax+b$由三次函数图像易知$t$在它的两个根之间,
二次函数$-3t^2-2at+a^2-4b$的最值在区间端点和对称轴处取得,
故所求范围为$\left[\sqrt{a^2-3b},2\sqrt{\dfrac{a^2}{3}-b}\right]$
$$\begin{cases}
a+b+c&=-a\\
ab+bc+ca&=b\\
abc&=-c
\end{cases}$$
得$c=0,a=0,b=0\vee c=0,a=1,b=-2\vee a=-\dfrac{1}{b},c=\dfrac{2}{b}-b$,
将$b$代入三次方程得$b^3+ab^2+b^2+c=0$再将$a=-\dfrac{1}{b},c=\dfrac{2}{b}-b$代入化简得
$b^4+b^3-2b^2+2=0$从而$b=-1$或者$b^3-2b+2=0$,利用代换$b=t+\dfrac{2}{3t},$代入化简得
$t^3+\dfrac{8}{27t^3}+2=0$
从而$t=\sqrt[3]{-1+\sqrt{\dfrac{19}{27}}}$
故有理解为\((a,b,c)=(0,0,0),(1,-1,-1),(1,-2,0)\),
无理解为\(\left(-\dfrac 1b,b,\dfrac 2b-b\right)\),其中\(b=t+\dfrac 2{3t}\),而\(t=\sqrt [3]{-1+\sqrt{\dfrac {19}{27}}}\).
MT【277】华中科技大学理科实验班选拔之三次方程的更多相关文章
- Minieye杯第十五届华中科技大学程序设计邀请赛现场同步赛 I Matrix Again
Minieye杯第十五届华中科技大学程序设计邀请赛现场同步赛 I Matrix Again https://ac.nowcoder.com/acm/contest/700/I 时间限制:C/C++ 1 ...
- Aging Cell两篇连发 | 华中科技大学王建枝团队运用蛋白质组学技术发现具有AD早期诊断价值的血小板生物标志物
阿尔茨海默症 (Alzheimer 's disease,AD) 是一种原发性的中枢神经系统退行性疾病.AD的主要临床症状是缓慢的认知功能减退,包括记忆.逻辑推理能力和语言功能的进行性丟失,最后发展为 ...
- Minieye杯第十五届华中科技大学程序设计邀请赛网络赛D Grid(简单构造)
链接:https://ac.nowcoder.com/acm/contest/560/D来源:牛客网 题目描述 Give you a rectangular gird which is h cells ...
- H-Modify Minieye杯第十五届华中科技大学程序设计邀请赛现场赛
题面见 https://ac.nowcoder.com/acm/contest/700#question 题目大意是有n个单词,有k条替换规则(单向替换),每个单词会有一个元音度(单词里元音的个数)和 ...
- Minieye杯第十五届华中科技大学程序设计邀请赛网络赛 部分题目
链接:https://pan.baidu.com/s/12gSzPHEgSNbT5Dl2QqDNpA 提取码:fw39 复制这段内容后打开百度网盘手机App,操作更方便哦 D Grid #inc ...
- 华中科技大学 ubuntu14.04源
deb http://mirrors.hust.edu.cn/ubuntu/ trusty main restricteddeb-src http://mirrors.hust.edu.cn/ubun ...
- 在linux使用锐捷客户端上网(华中科技大学)
第一步:下载锐捷客户端linux版本,下载网址为http://ncc.hust.edu.cn/cyxz/rzkhd.htm 第二步:解压该包,进入目录 #unzip RG_Supplicant_For ...
- 第十四届华中科技大学程序设计竞赛决赛同步赛 A - Beauty of Trees
A - Beauty of Trees 题意: 链接:https://www.nowcoder.com/acm/contest/119/A来源:牛客网 Beauty of Trees 时间限制:C/C ...
- 第十四届华中科技大学程序设计竞赛决赛同步赛 F Beautiful Land(01背包,背包体积超大时)
链接:https://www.nowcoder.com/acm/contest/119/F来源:牛客网 Beautiful Land 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1 ...
随机推荐
- hdu 2063 给男女匹配 (匈牙利算法)
来源:http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意: 有k个组合a,b组合,代表a愿意与b坐过山车,共m个女生 n个男生,问有多少个满意的匹配 题 ...
- sso单点登录系统(解决session共享)
场景:假设一个用户将自己的登录信息提交到后台,如果session保存的信息分布在多台机器上,并且不共享,那么可能导致用户的登录信息出现短暂的丢失,为什么这样讲,因为用户访问服务器中间还要经过负载均衡服 ...
- PS调出通透唯美阳光外景女生照片
1.稍微增加了一点曝光度,让照片更明亮. 2.对比度的话我现在比习惯加一点,而且 一般导入PS之后我还会按照片情况去加对比度. 3.高光的部分一般会拉回来一点,根据照片调. 4.阴影部分加一点的话会让 ...
- AVAudioSesion和AVAudioPlayer的基本使用
iOS基础篇-AVPLayer和AVAudioSession 2018.02.27 16:17 字数 215 阅读 1516评论 0喜欢 4 作用 AVPLayer:可以用来播放在线及本地音视频 AV ...
- Django 生成验证码或二维码 pillow模块
一.安装PIL PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了.PIL功能非常强大,API也非常简单易用. PIL模块只支持到Python 2 ...
- Redis使用和部分源码剖析以及Django缓存和redis的关系
0.特点: a.持久化 b.单进程.单线程 c.5大数据类型 d.用于操作内存的软件. e.虽然是缓存数据库但是可以做持久化的工作 MySQL是一个软件,帮助开发者对一台机器的硬盘进行操作 ...
- Jenkins redeploy artifacts
jenkins redeploy artifacts 按钮 - 开源中国https://www.oschina.net/question/3045293_2247829 Jenkins 构建失败后通过 ...
- [转帖]Linux下fork函数及pthread函数的总结
Linux下fork函数及pthread函数的总结 https://blog.csdn.net/wangdd_199326/article/details/76180514 fork Linux多进程 ...
- Day 3-6 生成器&迭代器
---恢复内容开始--- 列表生成式: list = [i*i for i in range(20)] # 这就是一个列表生成式 print(list) # [0, 1, 4, 9, 16, 25, ...
- C# Note31: 如何使用Visual Studio做单元测试
待更! 使用Visual Studio 2013进行单元测试--初级篇 带你玩转Visual Studio——单元测试(C++例)