【BZOJ1188】分裂游戏(博弈论)

题面

BZOJ

洛谷

题解

这道题目比较神仙。

首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中。

发现每次的转移一定是拿出一棵豆子,放两颗豆子,所以一个瓶子中无论豆子数量是多少,我们都可以把所有的豆子拆开看成单个的\(Nim\)游戏(因为迟早都要全部进入到\(n\)号瓶子的)

发现如果有两个在同位置的豆子,胜负结果是不会改变的,因为后手可以一直模仿先手的动作进行单个游戏。因此所有位置的豆子等价于这个位置的豆子总数对于\(2\)的余数。

那么,现在问题变成了,给你一棵豆子,他在\(i\)位置,回答胜负情况。

那么预处理\(SG\)函数即可。这个\(SG\)函数从后往前求。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 50
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX],SG[MAX];
bool vis[MAX];
int main()
{
int T=read();
while(T--)
{
n=read();memset(SG,0,sizeof(SG));
for(int i=1;i<=n;++i)a[i]=read();
for(int i=n-1;i;--i)
{
memset(vis,0,sizeof(vis));
for(int j=i+1;j<=n;++j)
for(int k=j;k<=n;++k)
vis[SG[j]^SG[k]]=true;
for(int j=0;;++j)if(!vis[j]){SG[i]=j;break;}
}
int cnt=0,A=0,B=0,C=0,sg=0;
for(int i=1;i<=n;++i)if(a[i]&1)sg^=SG[i];
for(int i=1;i<=n;++i)
if(a[i])
for(int j=i+1;j<=n;++j)
for(int k=j;k<=n;++k)
if(!(sg^SG[i]^SG[j]^SG[k]))
{
if(!cnt)A=i,B=j,C=k;
++cnt;
}
printf("%d %d %d\n%d\n",A-1,B-1,C-1,cnt);
}
return 0;
}

【BZOJ1188】分裂游戏(博弈论)的更多相关文章

  1. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  2. BZOJ1188:[HNOI2007]分裂游戏(博弈论)

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...

  3. [HNOI2007]分裂游戏 博弈论

    题面 题面 题解 这题的思路比较特别,观察到我们的每次操作实质上是对于一颗豆子的操作,而不是对一瓶豆子的操作,因此我们要把每颗豆子当做一个独立的游戏,而它所在的瓶子代表了它的SG值. 瓶子数量很少,因 ...

  4. [bzoj1188]分裂游戏

    容易发现所有豆子相互独立,只需要考虑每一个豆子的sg函数并异或起来即可,sg函数从后往前暴力即可 1 #include<bits/stdc++.h> 2 using namespace s ...

  5. [bzoj1188][HNOI2007]分裂游戏_博弈论

    分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...

  6. 【BZOJ 1188】 [HNOI2007]分裂游戏

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...

  7. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  8. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  9. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

随机推荐

  1. django 路由系统,数据库操作

    一.修改配置 数据库 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME':'dbname', 'USER': ...

  2. PyCharm中快速给选中的代码加上{}、<>、()、[]

    快捷键Ctrl + Shift + S 呼出下图所示界面:

  3. awr format

    AWR-Format工具 在Chrome高版本中配置使用AWR-Format for Chrome插件

  4. css行内省略号、垂直居中

    应用场景分析: 一.当你的文字限定行数,超出部分的文字用省略号显示. (有两个使用场景:1.单行 2.多行) // 单行 overflow: hidden; text-overflow:ellipsi ...

  5. Json详解以及fastjson使用教程

    Json是一种轻量级的数据交换格式,采用一种“键:值”对的文本格式来存储和表示数据,在系统交换数据过程中常常被使用,是一种理想的数据交换语言.在使用Java做Web开发时,不可避免的会遇到Json的使 ...

  6. [转帖]Centos7 yum安装Chrome浏览器

    Centos7 yum安装Chrome浏览器 https://www.cnblogs.com/ianduin/p/8727333.html以及https://blog.csdn.net/libaine ...

  7. vue图表

    https://www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html

  8. Django Rest framework 框架之解析器

    解析器 序列化***** 请求数据进行校验 对queryset进行序列化处理 分页 路由 视图 渲染器

  9. 集合转数组的toArray()和toArray(T[] a)方法

    参考:集合转数组的toArray()和toArray(T[] a)方法 1.ArrayList的toArray ArrayList提供了一个将List转为数组的一个非常方便的方法toArray.toA ...

  10. windows 10 multi virtual desktop keyboard shortcut

    windows 10 multi virtual desktop keyboard shortcut windows 10 multi desktop keyboard shortcut https: ...