原文http://www.cnblogs.com/zhouzhendong/p/8665675.html

题目传送门 - 51Nod1675

题意

  给定序列$a,b$,让你求满足$\gcd(x,y)=1,a_{b_x}=b_{a_y}$的$(x,y)$的个数。

题解

  我们先考虑没有$gcd(x,y)=1$的情况。

  仔细一看发现$a_{b_x}=b_{a_y}$是个障眼法,跟你绕来绕去。

  弄个新的$A,B$序列,其中$A_x=a_{b_x},B_x=b_{a_x}$。然后就把这个条件变成了$A_x=B_y$。舒服多了。

  然后我们可以把其中一个序列信息放进桶里面,然后另一个随便弄几下,就可以$O(n)$搞定了。

  考虑到$gcd(x,y)=1$。于是这里要用到莫比乌斯反演套路:倍数反演。

  设$f(i)$表示$i=gcd(x,y)$的满足条件的答案数。

  设$F(i)$表示$i|gcd(x,y)$的满足条件的答案数。

  于是这里可以放上倍数反演的式子:

  $$F(n)=\sum_{n|d}f(d)\Longrightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$

  这里只需要求$f(1)=\sum_{i=1}^{n}\mu(i)*F(i)$。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,a[N],b[N],_a[N],_b[N],tax[N];
int prime[N],u[N],pcnt=0;
LL F[N];
bool f[N];
void get_prime(int n){
memset(f,true,sizeof f);
u[1]=1,f[0]=f[1]=0;
for (int i=2;i<=n;i++){
if (f[i])
prime[++pcnt]=i,u[i]=-1;
for (int j=1;j<=pcnt&&i*prime[j]<=n;j++){
f[i*prime[j]]=0;
if (i%prime[j])
u[i*prime[j]]=-u[i];
else {
u[i*prime[j]]=0;
break;
}
}
}
}
int main(){
scanf("%d",&n);
get_prime(n);
for (int i=1;i<=n;i++)
scanf("%d",&_a[i]);
for (int i=1;i<=n;i++)
scanf("%d",&_b[i]);
for (int i=1;i<=n;i++)
a[i]=_a[_b[i]],b[i]=_b[_a[i]];
memset(tax,0,sizeof tax);
LL ans=0;
for (int i=1;i<=n;i++){
F[i]=0;
for (int j=i;j<=n;j+=i)
tax[a[j]]++;
for (int j=i;j<=n;j+=i)
F[i]+=tax[b[j]];
for (int j=i;j<=n;j+=i)
tax[a[j]]--;
ans+=F[i]*u[i];
}
printf("%lld",ans);
return 0;
}

  

51Nod1675 序列变换 数论 莫比乌斯反演的更多相关文章

  1. 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]

    序列变换 alpq654321 (命题人)   基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...

  2. 【BZOJ4176】Lucas的数论 莫比乌斯反演

    [BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...

  3. UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...

  4. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  5. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  6. 51nod1675 序列变换

    link 题意: 给定长为n的序列a,b,下标从1开始,问有多少对x,y满足gcd(x,y)=1且$a_{b_x}=b_{a_y}$? $n\leq 10^5.$ 题解: $a_{b_x}$和$b_{ ...

  7. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  8. 组合 数论 莫比乌斯反演 hdu1695

    题解:https://blog.csdn.net/lixuepeng_001/article/details/50577932 题意:给定范围1-b和1-d求(i,j)=k的数对的数量 #includ ...

  9. BZOJ4816 [Sdoi2017]数字表格 数论 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8666106.html 题目传送门 - BZOJ4816 题意 定义$f(0)=0,f(1)=1,f(i)=f(i ...

随机推荐

  1. LabVIEW 获取本机多个ip地址

    图 1   网上见了好多设置的,都没讲清楚,在这里整理一下本机ip地址的获取问题.关键在"字符串向ip地址转换"函数的设置上面,见下图2,选择多输出就能获取本机的多个ip地址,若不 ...

  2. 【原创】编程基础之Ruby

    ruby2.6.2 官方:https://www.ruby-lang.org/en/ 一 简介 A dynamic, open source programming language with a f ...

  3. 排查linux系统是否被入侵

    在日常繁琐的运维工作中,对linux服务器进行安全检查是一个非常重要的环节.今天,分享一下如何检查linux系统是否遭受了入侵? 一.是否入侵检查 1)检查系统日志 检查系统错误登陆日志,统计IP重试 ...

  4. 在Amazon FreeRTOS V10中使用运行时统计信息

    在MCU on Eclipse网站上看到Erich Styger在8月2日发的博文,一篇关于在Amazon FreeRTOS V10中使用运行时统计信息的文章,本人觉得很有启发,特将其翻译过来以备参考 ...

  5. java 中int与integer的区别

    int与integer的区别从大的方面来说就是基本数据类型与其包装类的区别: int 是基本类型,直接存数值,而integer是对象,用一个引用指向这个对象 1.Java 中的数据类型分为基本数据类型 ...

  6. WinSCP安装与使用

      WinSCP 是一个 Windows 环境下使用的 SSH(Source Shell)的开源图形化 SFTP(SSH File Transfer Protocol) 客户端.同时支持 SCP(So ...

  7. 《 Oracle查询优化改写 技巧与案例 》电子工业出版社

    第1章单表查询 11.1 查询表中所有的行与列 11.2 从表中检索部分行 21.3 查找空值 31.4 将空值转换为实际值 41.5 查找满足多个条件的行 51.6 从表中检索部分列 61.7 为列 ...

  8. Confluence 6 Windows 中以服务方式自动重启的原因

    针对长时间使用的 Confluence,我们推荐你配置 Confluence 自动随操作系统重启而启动.针对一些 Windows 的服务器,这意味着需要让 Confluence 以服务的方式运行. 有 ...

  9. Confluence 6 Oracle 创建数据库用户

    创建用户后并且指派权限: 使用 sqlplus 命令行工具通过命令行来访问 Oracle sqlplus user/password <as sysdba|as sysoper> 如果你的 ...

  10. 为什么在移动端用rem圆角不圆

    rem是根据网页效果图的尺寸来计算的,当然还要借助媒体查询来完成.例如你的设计稿如果是宽720px的话,那你的文字就要以原始大小除以11.25,就是对应下面媒体查询720px:例如16px的话就要16 ...