题目大意:给定一个 N 个点,M 条边组成的无向图,求至少在图中加入几条边才能使得整个图没有割边。

题解:求出该无向图的所有边双联通分量,每个边双联通分量可以理解成无向图的一个极大环,对该无向图进行缩点,形成一棵树。至少加入的边数和树中入度为 1 的节点个数有关,找找规律即可求得结果。

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=5010;
const int maxm=1e4+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/ struct edge{int x,y;}e[maxm];
vector<P> G[maxn];int tot=1;
int dfs_clk,dfn[maxn],low[maxn],dcc,cor[maxn],indeg[maxn];
int n,m;
bool bridge[maxm<<1]; void read_and_parse(){
n=read(),m=read();
for(int i=1,x,y;i<=m;i++){
x=read(),y=read();
e[i].x=x,e[i].y=y;
G[x].pb(mp(y,++tot)),G[y].pb(mp(x,++tot));
}
} void tarjan(int u,int fe){
dfn[u]=low[u]=++dfs_clk;
for(auto p:G[u]){
int v=p.fi,idx=p.se;
if(!dfn[v]){
tarjan(v,idx);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])bridge[idx]=bridge[idx^1]=1;
}else if(idx!=(fe^1)){
low[u]=min(dfn[v],low[u]);
}
}
}
void dfs(int u){
cor[u]=dcc;
for(auto p:G[u]){
int v=p.fi,idx=p.se;
if(cor[v]||bridge[idx])continue;
dfs(v);
}
} void solve(){
tarjan(1,0);
for(int i=1;i<=n;i++)if(!cor[i])++dcc,dfs(i);
if(dcc==1)return (void)puts("0");
for(int i=1;i<=m;i++){
int x=e[i].x,y=e[i].y;
if(cor[x]==cor[y])continue;
++indeg[cor[x]],++indeg[cor[y]];
}
int cnt=0;
for(int i=1;i<=dcc;i++)if(indeg[i]==1)++cnt;
if(cnt&1)++cnt;
printf("%d\n",cnt/2);
}
int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P2860】冗余路径的更多相关文章

  1. 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告

    P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...

  2. 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths

    P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...

  3. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  4. 洛谷p1052过河 路径压缩+dp

    洛谷 P1052 过河 思路部分可以看这篇博客 我将在这里对其进行一些解释与补充 首先我们先看题 乍一看 这不是模板题吗 然后开开心心的敲了一个简单dp上去 #include<iostream& ...

  5. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  6. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  7. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  8. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  9. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

随机推荐

  1. sass变量引入全局

    https://www.jianshu.com/p/ab9ab999344b(copy) 本文以Sass做案例,Less的参考,基本配置大同小异. 假如我们有一个Sass的全局变量common.scs ...

  2. C# Note33: 总结C# 6.0/7.0 新特性

    先注明,本文主体参考自:C# 6.0新特性 目前代码中使用了很多C#6.0的新特性,下面以Point类来做相关叙述: public class Point { public int X { get; ...

  3. 非关系型数据库----MongoDB

    一.什么是MongoDB? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提 ...

  4. hive安装详解

    1.安装MYSQL simon@simon-Lenovo-G400:~$ sudo apt-get install mysql-server simon@simon-Lenovo-G400:~$ su ...

  5. Java中Optional类的使用

    从 Java 8 引入的一个很有趣的特性是 Optional  类.Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) —— 每个 Java 程序员都 ...

  6. E: Unable to correct problems, you have held broken packages

    问题: apt install libmysqlclient-dev Reading package lists... DoneBuilding dependency tree       Readi ...

  7. SpringBoot之文件下载

    package org.springboot.controller; import org.springboot.constant.Constant; import org.springframewo ...

  8. JS--操作DOM树

    <ul id="ul1"> <li id="li1">111</li> <li id="li2"& ...

  9. border-color的深入理解

    .className{ width:100px;height:100px; border:100px solid; border-color: red green blue orange; } 最终的 ...

  10. Jenkins+PowerShell持续集成环境搭建(一)前期准备

    0. 系统要求 Windows Server:本文章使用的为Windows Server 2012 JDK:本文章使用为JDK 1.8 Windows PowerShell:本文章使用为PowerSh ...