用后缀树统计出出现了x次的本质不同的子串的个数,最后再乘以x,得到一个多项式。

这个多项式常数项为0,但是一次项不为0。

于是把整个多项式除以一次项,通过多项式求ln和多项式求exp求出它的幂。

最后再把除掉的项乘回来即可,时间复杂度$O(n\log n)$。

#include<cstdio>
#include<cstring>
typedef long long ll;
const int N=262144,K=17,inf=~0U>>2,S=27,M=200010,P=1005060097,G=5;
char s[M];
int n,m,x,i,j,k,C;
int a[N+10],b[N+10],tmp[N],tmp2[N],g[K+1],ng[K+1],inv[N+10],inv2;
int text[M],root,last,pos,need,remain,acnode,ace,aclen,size[M];
inline int min(int a,int b){return a<b?a:b;}
struct node{int st,en,lk,son[S];inline int len(){return min(en,pos+1)-st;}}tree[M];
inline int new_node(int st,int en=inf){return tree[++last].st=st,tree[last].en=en,last;}
inline int acedge(){return text[ace];}
inline void addedge(int node){
if(need)tree[need].lk=node;
need=node;
}
inline bool down(int node){
if(aclen>=tree[node].len())return ace+=tree[node].len(),aclen-=tree[node].len(),acnode=node,1;
return 0;
}
inline void init(){
need=last=remain=ace=aclen=0;
root=acnode=new_node(pos=-1,-1);
}
inline void extend(int c){
text[++pos]=c;need=0;remain++;
while(remain){
if(!aclen)ace=pos;
if(!tree[acnode].son[acedge()])tree[acnode].son[acedge()]=new_node(pos),addedge(acnode);
else{
int nxt=tree[acnode].son[acedge()];
if(down(nxt))continue;
if(text[tree[nxt].st+aclen]==c){aclen++;addedge(acnode);break;}
int split=new_node(tree[nxt].st,tree[nxt].st+aclen);
tree[acnode].son[acedge()]=split;
tree[split].son[c]=new_node(pos);
tree[nxt].st+=aclen;
tree[split].son[text[tree[nxt].st]]=nxt;
addedge(split);
}
remain--;
if(acnode==root&&aclen)aclen--,ace=pos-remain+1;
else acnode=tree[acnode].lk?tree[acnode].lk:root;
}
}
void dfs(int x,int sum){
sum+=tree[x].len();
if(tree[x].en==inf&&pos-sum+1<=n)size[x]=1;
for(int i=0;i<S;i++)if(tree[x].son[i]){
int j=tree[x].son[i];
dfs(j,sum),size[x]+=size[j];
}
if(size[x])a[size[x]]=(a[size[x]]+tree[x].len())%P;
}
inline int pow(int a,int b){int t=1;for(;b;b>>=1,a=1LL*a*a%P)if(b&1)t=1LL*t*a%P;return t;}
inline void NTT(int*a,int n,int t){
for(int i=1,j=0;i<n-1;i++){
for(int s=n;j^=s>>=1,~j&s;);
if(i<j){int k=a[i];a[i]=a[j];a[j]=k;}
}
for(int d=0;(1<<d)<n;d++){
int m=1<<d,m2=m<<1,_w=t==1?g[d]:ng[d];
for(int i=0;i<n;i+=m2)for(int w=1,j=0;j<m;j++){
int&A=a[i+j+m],&B=a[i+j],t=1LL*w*A%P;
A=B-t;if(A<0)A+=P;
B=B+t;if(B>=P)B-=P;
w=1LL*w*_w%P;
}
}
if(t==-1)for(int i=0,j=inv[n];i<n;i++)a[i]=1LL*a[i]*j%P;
}
void getinv(int*a,int*b,int n){
if(n==1){b[0]=pow(a[0],P-2);return;}
getinv(a,b,n>>1);
int k=n<<1,i;
for(i=0;i<n;i++)tmp[i]=a[i];
for(i=n;i<k;i++)tmp[i]=b[i]=0;
NTT(tmp,k,1),NTT(b,k,1);
for(i=0;i<k;i++){
b[i]=(ll)b[i]*(2-(ll)tmp[i]*b[i]%P)%P;
if(b[i]<0)b[i]+=P;
}
NTT(b,k,-1);
for(i=n;i<k;i++)b[i]=0;
}
inline void getln(int*a,int*b,int n){
getinv(a,tmp2,n);
int k=n<<1,i;
for(i=0;i<n-1;i++)b[i]=(ll)a[i+1]*(i+1)%P;
for(i=n-1;i<k;i++)b[i]=0;
NTT(b,k,1),NTT(tmp2,k,1);
for(i=0;i<k;i++)b[i]=(ll)b[i]*tmp2[i]%P;
NTT(b,k,-1);
for(i=n-1;i;i--)b[i]=(ll)b[i-1]*inv[i]%P;b[0]=0;
}
void getexp(int*a,int*b,int n){
if(n==1){b[0]=1;return;}
getexp(a,b,n>>1);
getln(b,tmp,n);
int k=n<<1,i;
for(i=0;i<n;i++){tmp[i]=a[i]-tmp[i];if(tmp[i]<0)tmp[i]+=P;}
if((++tmp[0])==P)tmp[0]=0;
for(i=n;i<k;i++)tmp[i]=b[i]=0;
NTT(tmp,k,1),NTT(b,k,1);
for(i=0;i<k;i++)b[i]=(ll)b[i]*tmp[i]%P;
NTT(b,k,-1);
for(i=n;i<k;i++)b[i]=0;
}
int main(){
scanf("%d%d%s",&m,&x,s+1);
if(m>x)return puts("0"),0;
n=std::strlen(s+1);
for(i=1;i<=n;extend(s[i++]-'a'));extend(26);
pos--,dfs(root,0);
for(i=0;i<=x;i++)a[i]=1LL*a[i]*i%P;
C=a[1],j=pow(C,P-2);
for(i=0;i<x;i++)a[i]=1LL*a[i+1]*j%P;
for(i=x;i<k;i++)a[i]=0;
for(g[K]=pow(G,(P-1)/N),ng[K]=pow(g[K],P-2),i=K-1;~i;i--)g[i]=(ll)g[i+1]*g[i+1]%P,ng[i]=(ll)ng[i+1]*ng[i+1]%P;
for(inv[1]=1,i=2;i<=N;i++)inv[i]=(ll)(P-inv[P%i])*(P/i)%P;inv2=inv[2];
for(k=1;k<=x;k<<=1);
getln(a,b,k);
for(i=0;i<k;i++)b[i]=1LL*b[i]*m%P;
getexp(b,a,k);
return printf("%d",1LL*a[x-m]*pow(C,m)%P),0;
}

  

BZOJ4175 : 小G的电话本的更多相关文章

  1. BZOJ 4175: 小G的电话本 SAM+FFT

    4175: 小G的电话本 Time Limit: 45 Sec  Memory Limit: 256 MBSubmit: 195  Solved: 48[Submit][Status][Discuss ...

  2. BZOJ 4175 小G的电话本 ——NTT

    后缀自动机统计出现了各种次数的串的和. 就是所谓的生成函数 然后FFT卷积即可. 卷积快速幂$n\log n \log n$ 注意一下实现,可以少两次NTT #include <map> ...

  3. C语言实现电话本 动态开辟 信息存储于文件

    下面是我用C写的一个电话本小项目,实现的功能有:添加 删除 修改 查找 排序 清空 显示,功能还是比较全的,内存也是动态开辟的.能存储于本地,能从本地读出并显示 头文件部分代码,contact.h: ...

  4. 微信电话本可免费拨打网络电话 通话一分钟约300K流量

    微信电话本新版本于昨日晚间发布,这是一款智能通讯增强软件,通话双方都下载此APP并开通免费通话功能就能使用微信电话本拨打免费网络电话,在对方无法接通情况下还能将音频转向语音信箱,微信电话本目前支持An ...

  5. C++之路进阶——codevs2933(诗人小G)

    2933 诗人小G 2009年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小G是一个出色的诗人 ...

  6. 苹果IPhone手机由于更新了IOS7 Beta测试版导致“激活出错”后,如何还原电话本和照片方法

    苹果这狗日的,手段果然狠,因为用户提前升级了测试版又没有更新正式版,就突然把手机变砖头,既不让升级正式版,也不让备份手机中的信息,确实有必要这样吗? 我的手机是IPone4s,在看了6月Apple W ...

  7. Android-->发送短信页面实现(短信发送以及群发和从电话本中选择联系人)-----------》2

    分析下怎么写 首先,我们需要一个输入框,可以手动的输入手机号码, 其次,很少有人愿意手动输入,那么我们需要提供一个按钮来给我们的用户选择自己电话本中的联系人(一次可以选择多个即群发) 然后,我们需要一 ...

  8. jdbc电话本项目

    整体思路:在登陆之后才能查看自己的电话本,电话本中包含用户名,联系人名字,电话,性别,分类: 1.登陆注册页面--数据库User表,注册登陆使用 2.电话本的前段显示,用表格和表单, 3.创建存取的电 ...

  9. JavaWeb项目之电话本,两个版本,以及总结反思

    使用技术: Oracle 数据库 前端后台: Servlet + jsp + JDBC + html + css + js 前端界面自定, 但一定实现需要的功能 实现功能: 用户可以登录 登录之后可以 ...

随机推荐

  1. 转自知乎大神---什么是 JS 原型链?

    我们知道 JS 有对象,比如 var obj = { name: 'obj' } 我们可以对 obj 进行一些操作,包括 「读」属性 「新增」属性 「更新」属性 「删除」属性 下面我们主要来看一下「读 ...

  2. 40个新鲜的 jQuery 插件,使您的网站用户友好

    作为最流行的 JavaScript 开发框架,jQuery 在现在的 Web 开发项目中扮演着重要角色,它简化了 HTML 文档遍历,事件处理,动画以及 Ajax 交互,这篇文章特别收集了40个新鲜的 ...

  3. ListView position

    在使用listview的时候,我们经常会在listview的监听事件中,例如OnItemClickListener(onItemClick)中,或listview的adapter中(getView.g ...

  4. MySQL binlog导入失败

    一个同事问我,说他用innobackupex恢复数据后用mysqlbinlog导入增量数据时,发现数据没有导入进去并且也没有报错. mysqlbinlog /u01/mysql_py/database ...

  5. poj1521

    霍夫曼编码,建树 #include <cstdio> #include <cstring> #include <queue> using namespace std ...

  6. mysql实现复杂groupby : GROUP_CONCAT

    select che,GROUP_CONCAT(concat_ws(':',routeNo,num) ORDER BY num DESC SEPARATOR ',') as gg from (sele ...

  7. javascript-词法分析解析

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. linux诡异的硬盘不足

    phpmyadmin页面登录不进去,ftp也连不上.而服务端的service都开着的.直觉是看一下硬盘使用情况. df -TH 发现可用空间几乎为0 但是查看各个目录使用情况: du -sh /* | ...

  9. .NetCore 使用 Linq 动态拼接Expression表达式条件来实现 对EF、EF Core 扩展查询排序操作

    相信在使用EF的时候对查询条件或者排序上的处理令人心烦,下面我们就来动态拼接表达式解决这一问题 当我们在查询中使用Where的时候可以看到如下参数 下面我们就来扩展 Expression<Fun ...

  10. [转] javascript组件开发方式

    作为一名前端工程师,写组件的能力至关重要.虽然JavaScript经常被人嘲笑是个小玩具,但是在一代代大牛的前仆后继的努力下,渐渐的也摸索了一套组件的编写方式. 下面我们来谈谈,在现有的知识体系下,如 ...