描述

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write
a program to find an assignment for each cow to some milking machine so
that the distance the furthest-walking cow travels is minimized (and,
of course, the milking machines are not overutilized). At least one
legal assignment is possible for all input data sets. Cows can traverse
several paths on the way to their milking machine.

输入

* Line 1: A single line with three space-separated integers: K, C, and M.

*
Lines 2.. ...: Each of these K+C lines of K+C space-separated integers
describes the distances between pairs of various entities. The input
forms a symmetric matrix. Line 2 tells the distances from milking
machine 1 to each of the other entities; line 3 tells the distances from
machine 2 to each of the other entities, and so on. Distances of
entities directly connected by a path are positive integers no larger
than 200. Entities not directly connected by a path have a distance of
0. The distance from an entity to itself (i.e., all numbers on the
diagonal) is also given as 0. To keep the input lines of reasonable
length, when K+C > 15, a row is broken into successive lines of 15
numbers and a potentially shorter line to finish up a row. Each new row
begins on its own line.

输出

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

样例输入

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

样例输出

2

题意

给你(K+C)*(K+C)的图,K个牛奶机,每个牛奶机最多供M头牛,一共C头牛,问所有方案中使得距离牛奶机器最远的牛的距离最小

题解

先把牛奶机连汇点T流量M,牛连源点S流量1,牛和牛奶机连流量1,如果C牛都能有饮料机,则说明汇点T=C

然后是怎么连牛和牛奶机的问题,可以知道答案求的是最大值最小

直接二分答案[0,200*(K+C)]

每次把距离<=mid的边加进去,如果T=C,则说明可行,r=mid

否则l=mid

代码

 #include<bits/stdc++.h>
using namespace std; const int maxn=1e5+;
const int maxm=2e5+;
int n,m,S,T;
int deep[maxn],q[];
int FIR[maxn],TO[maxm],CAP[maxm],COST[maxm],NEXT[maxm],tote; void add(int u,int v,int cap)
{
TO[tote]=v;
CAP[tote]=cap;
NEXT[tote]=FIR[u];
FIR[u]=tote++; TO[tote]=u;
CAP[tote]=;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool bfs()
{
memset(deep,,sizeof deep);
deep[S]=;q[]=S;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(CAP[v]&&!deep[TO[v]])
{
deep[TO[v]]=deep[u]+;
q[++tail]=TO[v];
}
}
}
return deep[T];
}
int dfs(int u,int fl)
{
if(u==T)return fl;
int f=;
for(int v=FIR[u];v!=-&&fl;v=NEXT[v])
{
if(CAP[v]&&deep[TO[v]]==deep[u]+)
{
int Min=dfs(TO[v],min(fl,CAP[v]));
CAP[v]-=Min;CAP[v^]+=Min;
fl-=Min;f+=Min;
}
}
if(!f)deep[u]=-;
return f;
}
int maxflow()
{
int ans=;
while(bfs())
ans+=dfs(S,<<);
return ans;
}
void init()
{
tote=;
memset(FIR,-,sizeof FIR);
}
int K,C,N,M,a[][];
int main()
{
cin>>K>>C>>M;
N=K+C;
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
{
scanf("%d",&a[i][j]);
if(i!=j&&!a[i][j])a[i][j]=0x3f3f3f3f;
}
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
int l=,r=*N;
S=,T=K+C+;
while(r-l>)
{
int mid=(l+r)>>;
init();
for(int i=;i<=K;i++)
add(S,i,M);
for(int i=K+;i<=N;i++)
add(i,T,);
for(int i=;i<=K;i++)
for(int j=K+;j<=N;j++)
if(a[i][j]&&a[i][j]<=mid)
add(i,j,a[i][j]);
int sum=maxflow();
if(sum==C)r=mid;
else l=mid;
}
printf("%d\n",r);
return ;
}

TZOJ 1594 Optimal Milking(二分+最大流)的更多相关文章

  1. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  2. POJ2112 Optimal Milking 【最大流+二分】

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12482   Accepted: 4508 ...

  3. POJ 2112 Optimal Milking (二分+最短路+最大流)

    <题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...

  4. POJ 2112 Optimal Milking ( 经典最大流 && Floyd && 二分 )

    题意 : 有 K 台挤奶机器,每台机器可以接受 M 头牛进行挤奶作业,总共有 C 头奶牛,机器编号为 1~K,奶牛编号为 K+1 ~ K+C ,然后给出奶牛和机器之间的距离矩阵,要求求出使得每头牛都能 ...

  5. POJ-2112 Optimal Milking(floyd+最大流+二分)

    题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...

  6. POJ 2112 Optimal Milking(最大流)

    题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...

  7. POJ 2112.Optimal Milking (最大流)

    时间限制:2s 空间限制:30M 题意: 有K台挤奶机(编号1~K),C头奶牛(编号K+1~K+C),给出各点之间距离.现在要让C头奶牛到挤奶机去挤奶,每台挤奶机只能处理M头奶牛,求使所走路程最远的奶 ...

  8. POJ2112 Optimal Milking(最大流)

    先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...

  9. poj2112Optimal Milking(二分+最大流)

    链接 floyd求出牛到机器的最短距离,二分距离,小于当前距离的边容量设为1,求出满容量下的最短距离. EK算法 #include <iostream> #include<cstdi ...

随机推荐

  1. 配置maven访问nexus,配置项目pom.xml以发布maven项目到nexus中

    maven访问nexus有三种配置方法,分别为: 项目pom.xml,优先级最高: user的settings.xml,优先级中,未在pom.xml中配置repository标签,则使用这个配置: m ...

  2. 25_ajax请求_使用fetch

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Java如何判断当前系统是Windows 还是LInux

  4. 卸载数据盘、更改Inodes

    更改inodes  会格式化数据库,记得先备份 1.fuser -m -v /dev/vdb查看哪些进程正在占用数据库 2.然后kill 掉进程 3.umount /data1/ 4.mkfs.ext ...

  5. TLS协议(安全传输层协议)

    概况 安全传输层协议(TLS)用于在两个通信应用程序之间提供保密性和数据完整性.该协议由两层组成: TLS 记录协议(TLS Record)和 TLS 握手协议(TLS Handshake).较低的层 ...

  6. 混合app开发,h5页面调用ios原生APP的接口

    混合APP开发中,前端开发H5页面,不免会把兼容性拉进来,在做页面的兼容性同事,会与原生app产生一些数据交互: 混合APP开发,安卓的兼容性倒是好说,安卓使用是chrome浏览器核心,已经很好兼容H ...

  7. Delphi动态调用C++写的DLL

    c++ DLL 文件,建议用最简单的c++编辑工具.不会加入很多无关的DLL文件.本人用codeblocks+mingw.不像 VS2010,DLL编译成功,调用的时候会提示缺其他DLL. 系统生成的 ...

  8. C#中Graphics的画图代码【转】

    我要写多几个字上去 string str = "Baidu"; //写什么字? Font font = Font("宋体",30f); //字是什么样子的? B ...

  9. server安装

    ArcGIS Server Enterprise10 安装过程 1.ArcGIS Server Enterprise10 安装之前先检查下系统有没有安装IIS.右击电脑--管理--服务和应用程序--I ...

  10. TensorFlow saved_model 模块

    最近在学tensorflow serving 模块,一直对接口不了解,后面看到这个文章就豁然开朗了, 主要的困难在于   tf.saved_model.builder.SavedModelBuilde ...