题目描述

异或是一种神奇的运算,大部分人把它总结成不进位加法.

在生活中…xor运算也很常见。比如,对于一个问题的回答,是为1,否为0.那么:

(A是否是男生 )xor( B是否是男生)=A和B是否能够成为情侣

好了,现在我们来制造和处理一些复杂的情况。比如我们将给出一颗树,它很高兴自己有N个结点。树的每条边上有一个权值。我们要进行M次询问,对于每次询问,我们想知道某两点之间的路径上所有边权的异或值。

输入输出格式

输入格式:

输入文件第一行包含一个整数N,表示这颗开心的树拥有的结点数,以下有N-1行,描述这些边,每行有3个数,u,v,w,表示u和v之间有一条权值为w的边。接下来一行有一个整数M,表示询问数。之后的M行,每行两个数u,v,表示询问这两个点之间的路径上的权值异或值。

输出格式:

输出M行,每行一个整数,表示异或值

输入输出样例

输入样例#1

5

1 4 9644

2 5 15004

3 1 14635

5 3 9684

3

2 4

5 4

1 1

输出样例#1

975

14675

0

说明

对于40%的数据,有1 ≤ N,M ≤ 3000;

对于100%的数据,有1 ≤ N ,M≤ 100000。

算法:

LCA+数学

 

分析:

这道题乍眼一看感觉是带权值的最近公共祖先问题,但粗略计算后发现会超时,进一步分析,得到一些有关异或的规律,然后这就是一道暴力的题目。

 

引用一些大佬的资料:

根据题目中对“异或”的定义,我们可以得出异或的真值表,这里我们用a,b代表异或的两个元素,a^b代表a按位异或的值。

    a    b    a^b
    0    0    0
    0    1    1
    1    0    1
    1    1    0

我们发现,如果a==b,那么a^b就是0,否则式子的值就是1。

通过真值表,我们可以发现并证明异或的几个性质。

1.a^b==b^a

异或具有交换律

    a    b    a^b    b^a
    0    0    0        0
    0    1    1        1
    1    0    1        1
    1    1    0        0

2.a^b^c==a^(b^c)

异或具有结合律

    a    b    c    a^b^c    a^(b^c)
    0    0    0    0        0
    0    0    1    1        1
    0    1    0    1        1
    0    1    1    0        0
    1    0    0    1        1
    1    0    1    0        0
    1    1    0    0        0
    1    1    1    1        1

3.a^a==0

异或自己是0

    a    a^a
    0    0
    1    0

4.a^0=a

异或0还是0

    a    a^0
    0    0
    1    1

由以上四点性质,我们可以推出:

a^b^b = a^(b^b)

     =    a^0
    =    a

所以推出如下定理:

异或的逆运算是它本身!!!

讲一下对于本题的具体思路:对于这棵树,随意指定一个根节点,以此点来建树,维护每个点到根节点的距离,两个点u到v的树上路径一定为

u->lca(u,v)->v

第一个过程一定是一直向父亲节点前进,第二个过程一定是一直向儿子节点前进。

(lca(u,v)的定义为u,v的树上最近公共祖先)

那么最后查询的答案一定为

length[u]^length[v] anc^ length[lca(u,v)] anc^ length[lca(u,v)]

其中anc^为^的逆运算,由于之前已经推出anc^等价于^,而两次亦或的结果等价于原结果,所以最后的答案为:

length[u]^length[v]

此处不用考虑特判u或v是根节点的情况。

建树的时间复杂度为O(N),查询只需要O(1)的时间,最后程序的时间复杂度为O(N+M),空间复杂度为O(N)。

 

 

上代码:

 

 #include<cstdio>
#define maxn 100010
using namespace std; int n,m,tot,head[maxn],dis[maxn];
struct node
{
int nxt,to,val;
}edge[maxn<<];
bool vis[maxn]; int read()
{
int x=,f=;
char c=getchar();
while (c<||c>)
f=c=='-'?-:,c=getchar();
while (c>=&&c<=)
x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
} void add(int c,int b,int a)
{
edge[++tot]=(node){head[a],b,c};
head[a]=tot;
edge[++tot]=(node){head[b],a,c};
head[b]=tot;
} int dfs(int u,int Xor)
{
dis[u]=Xor;
vis[u]=;
for (int i=head[u];i;i=edge[i].nxt)
if (!vis[edge[i].to])
dfs(edge[i].to,Xor^edge[i].val);
} int main()
{
int i,j,k,u,v;
n=read();
for (i=;i<=n-;i++)
add(read(),read(),read());
m=read();
dfs(,);
while (m--)
printf("%d\n",dis[read()]^dis[read()]);
return ;
}

【洛谷P2420】让我们异或吧的更多相关文章

  1. 洛谷 P2420 让我们异或吧 解题报告

    P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...

  2. 洛谷——P2420 让我们异或吧

    P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...

  3. 洛谷 [P2420] 让我们异或吧

    某两点之间的路径上所有边权的异或值即dis1^dis2--^disn. 由于x^y^y=x,所以dfs预处理出每一点到根节点的异或值,对于每次询问,直接输出 disu^disv. #include & ...

  4. 洛谷P2420 让我们异或吧(树链剖分)

    题目描述异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能够 ...

  5. [洛谷P2420] 让我们异或吧

    题目链接:让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是 ...

  6. ⌈洛谷4735⌋⌈BZOJ3261⌋最大异或和【可持久化01Trie】

    题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护 ...

  7. AC日记——让我们异或吧 洛谷 P2420

    题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能 ...

  8. skkyk:题解 洛谷P2420 【让我们异或吧】lca+xor前缀和

    刚学了LCA,写篇题解巩固一下 首先题目有误: (A是否是男生 )xor( B是否是男生)=A和B是否能够成为情侣,这句话显然是错误的qwq 对于这道题,容易看出,对于待处理的两个点,只要我们找到他的 ...

  9. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

随机推荐

  1. 《Linux内核分析》第三周学习笔记

    <Linux内核分析>第三周学习笔记 构造一个简单的Linux系统MenuOS 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.stud ...

  2. linux 常用命令-tar(压缩、解压)

    linux中通过tar命令来压缩解压文件,常用命令如下 主选项(主选项是必须要有的,作用是告诉这次操作的主要目的): 1)c: (create)创建压缩包或者打包 2)x:(extract)拆包 3) ...

  3. “数学口袋精灵”App的第一个Sprint计划----开发日记

    “数学口袋精灵”第一个Sprint计划----第一天 项目进度: 1.我们在商量这我们的初步想法,考虑要选择做算数的软件还是做关于摄影O2O APP的开发(推荐).每个人会去上网百度浏览了解这两个项目 ...

  4. android开发心得之知识的量变到质变

    随着身边越来越多的人开始了尝试android开发,看着他们一点点学期 从nodepad++写代码 cmd 执行,到安装eclipse 和android SDK,仿佛看到了昨天的我一样,一样勤勤恳恳的学 ...

  5. asp.net简述MVC开发模式

    详情请参考:http://www.runoob.com/aspnet/mvc-intro.html 1.MVC 是三种 ASP.NET 编程模式中的一种.MVC 是一种使用 MVC(Model Vie ...

  6. CI框架 default_controller 如何设置为:'目录/Controller' 转

    闲谈 前几天,我的室友发现了一个问题:CI框架的Router.php文件的default_controller设置为application\controllers文件下的 一级PHP文件名 就可以,设 ...

  7. USACO 2012 December ZQUOJ 24122 Scrambled Letters(二分)

    题意:有一个字典序名单,现在把这些名单的顺序和名字的字符顺序扰乱了,要输出原先的名字在原来的名单中的最低和最高位置. 分析:先将所有的名字串按字典序从小到大和从大到小分别排序smin[]和smax[] ...

  8. 使用doxygen静态分析开源代码

    doxygen是一款生成开源代码说明文件的工具,因为不需要编译源码,用作代码的分析也十分方便. 一.安装 sudo apt-get install graphviz sudo apt-get inst ...

  9. CentOS服务器配置SSH免密码登录

    由于工作需要,经常要登录到多台服务器远程操作,每次都是ssh user@host:port 再输入密码,时间长了,难免觉得乏味-- 故而从度娘那里扒来了一些让SSH免密码登录的办法,其实这也是使用Gi ...

  10. 51nod1229 序列求和 V2 【数学】

    题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...