World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1754    Accepted Submission(s): 886

Problem Description

Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 

Input

First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 

Output

For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 

Sample Input

1
4 2 1
1 3 8
2 4 15
2 3 4
 

Sample Output

19
 

Author

alpc20
 

Source

 
差分约束系统
建图:
问题询问最大值,因此差分约束求最短路。不等式全部转化成 <= 号。
对于 dis[v] - dis[u] <= w  (u < v),从u到v建立一条权值为w的有向边。
对于 dis[v] - dis[u] >= w  (u < v), 将不等式转换为dis[u] - dis[v] <= -w  (u < v),从v到u建立一条权值为-w的有向边。
 
spfa找最短路。
 //2017-08-29
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f; int head[N], tot;
struct Edge{
int to, next, w;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} int n, m, c;
bool vis[N];
int dis[N], cnt[N]; bool spfa(int s, int n){
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
memset(cnt, , sizeof(cnt));
vis[s] = ;
dis[s] = ;
cnt[s] = ;
deque<int> dq;
dq.push_back(s);
int sum = , len = ;
while(!dq.empty()){
// LLL 优化
while(dis[dq.front()]*len > sum){
dq.push_back(dq.front());
dq.pop_front();
}
int u = dq.front();
sum -= dis[u];
len--;
dq.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(dis[v] > dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
if(!vis[v]){
vis[v] = ;
// SLF 优化
if(!dq.empty() && dis[v] < dis[dq.front()])
dq.push_front(v);
else dq.push_back(v);
sum += dis[v];
len++;
if(++cnt[v] > n)return false;
}
}
}
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("input.txt", "r", stdin);
int T, n, x, y;
cin>>T;
while(T--){
init();
cin>>n>>x>>y;
int u, v, w;
while(x--){
cin>>u>>v>>w;
add_edge(u, v, w);
}
while(y--){
cin>>u>>v>>w;
add_edge(v, u, -w);
}
if(spfa(, n)){
if(dis[n] == INF)cout<<-<<endl;
else cout<<dis[n]<<endl;
}else cout<<-<<endl;
} return ;
}

HDU3592(差分约束)的更多相关文章

  1. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  2. hdu3592(差分约束) (线性)

    题意:一些牛按序号排成一条直线,有两种要求,A和B距离不得超过X,还有一种是A和B距离不得少于Y,问1和N可能的最大距离. 和poj那题一样,就是多了多组数据. #include<cstring ...

  3. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  4. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  5. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  6. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

  7. 2014 Super Training #6 B Launching the Spacecraft --差分约束

    原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...

  8. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  9. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

随机推荐

  1. java list集合运算

    list集合运算 import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.I ...

  2. 【6】JMicro微服务-服务日志监控

    如非授权,禁止用于商业用途,转载请注明出处作者:mynewworldyyl   1. 微服务相关 在前面的1到5节中,总共涉及服务提供者,服务消费者,服务监听服务,发布订阅服务,熔断器服务5种类型的猪 ...

  3. POJ 2845

    #include <iostream> #include <string> #include <algorithm> #define MAXN 350 using ...

  4. Vue2.5开发去哪儿网App 第五章笔记 上

    1.css动画原理 .fade-enter{ opacity: 0; } .fade-enter-active{ transition: opacity 2s; } .fade-leave-to{ o ...

  5. 【转载】SQL Server 版本列表

    Quick summary:     RTM (no SP) SP1 SP2 SP3 SP4  SQL Server 2017     codename vNext not yet released  ...

  6. Qt中QMenu的菜单关闭处理方法

    Qt中qmenu的实现三四千行... 当初有个特殊的需求, 要求菜单的周边带几个像素的阴影, 琢磨了半天, 用QMenu做不来, 就干脆自己用窗口写一个 然而怎么让菜单消失却非常麻烦 1. 点击菜单项 ...

  7. Git学习系列之Debian或Ubuntu上安装Git详细步骤(图文详解)

    前言 最早Git是在Linux上开发的,很长一段时间内,Git也只能在Linux和Unix系统上跑.不过,慢慢地有人把它移植到了Windows上.现在,Git可以在Linux.Unix.Mac和Win ...

  8. lucene-01-简介

    1, 介绍 hadoop作者开发的 hdfs最开始作为netch的文件存储来使用的 2, 存储结构 lucene快的原因, 是因为添加数据的时候会对数据进行分词, 将分词后的词建立索引, 存储到索引库 ...

  9. tar 压缩解压

     tar命令 tar可以为文件和目录创建档案.利用tar,用户可以为某一特定文件创建档案(备份文件),也可以在档案中改变文件, 或者向档案中加入新的文件.tar最初被用来在磁带上创建档案,现在,用户可 ...

  10. spring-boot-mail

    1. 功能 发送普通邮件 发送htm邮件 发送带附件的邮件 发送带静态资源的邮件 2. 实现 类结构图 3. 实现 接口 package com.jihite.service; public inte ...