基因组表达分析:如何选择RNA-seq vs. 芯片
基因组表达分析:如何选择RNA-seq vs. 芯片
发布日期:2017-03-29 10:00
DNA 芯片(上图左侧)由附着在表面的核酸探针组成。首先,从样品中提取 RNA 并转化为互补 DNA(cDNA),用荧光标签(1)进行标记。 接下来标记的 cDNA 片段与芯片(2)上的核酸杂交。 扫描芯片检测每个斑点的荧光水平,从而得到基因表达水平(3)。 在 RNA-seq 中,RNA 也从样品中提取并转化为 cDNA,以备用于测序(A)。 接下来对 cDNA 文库进行测序(B),将所得读数与基因组对应,定量分析基因表达(C)。
自二十世纪九十年代中期以来,芯片就一直是基因组表达分析的中坚力量。在这一技术最辉煌的时期,准备研究基因表达模式的人都会想到使用芯片。不过随着测序成本的直线下降,RNA 测序(RNA-seq)成为了越来越受欢迎的转录组分析方法。
DNA 芯片上排列着大量的核酸探针,可以代表生物的整个基因组或部分基因组,比如外显子、miRNA、单核苷酸多态性 SNP 等等。用芯片分析基因表达需要抽提 RNA,将其反转录为 cDNA,然后进行荧光标记。芯片上各点的信号强弱,代表了该探针目的基因的表达量。RNA-seq 主要是将 RNA 转化为 cDNA 文库,然后进行直接测序。虽然处理原始数据比较麻烦,但 RNA-seq 能够做得到芯片做不到的事。RNA-seq 可以揭示未知的转录本、基因融合和遗传多态性,而芯片只能检出明确的已知目标。
在测序深度足够的情况下,RNA-seq 在高丰度和低丰度转录本检测中都比芯片有效。不过由于芯片可以快速分析大量样本,该技术在这方面还将继续占据统治地位,FDA 国家毒理学研究中心的 Weida Tong 指出。不过,科学研究最终将完全转向 RNA-seq,Tong 说。在此之前,芯片和 RNA-seq 数据应当更加兼容,RNA-seq 数据的分析和储存必须进一步简化。
“这就像是临产前的阵痛期,”Tong 说。“一旦完成这个痛苦的过程,大家就能真正享受到技术带来的福利。”The Scientist 杂志与多位专家共同探讨了从芯片到 RNA-seq 的过渡,希望帮助研究者们顺利度过这段艰难的转型期,最终实现华丽转身。
通向全新世界
芯片分析依赖于已知的基因组信息,这也是该技术的最大局限。显然,在探索性研究和非模式生物研究中,RNA-seq 才是真正的大赢家。RNA-seq 的转录组分析是无偏好的,可以揭示新剪接点、小 RNA 以及芯片漏掉的新基因。“
与芯片探针不同,RNA 测序不需要预先知道序列信息,” 安捷伦科技公司的 Kevin Poon 说,“因此它是一个理想的研发平台,能够获得转录本序列并在此基础上发现突变和融合转录本。”
改用 RNA-seq 的研究者们往往是 “看到了芯片无法检出的生物学信息,” 赛默飞世尔公司的 Anup Parikh 指出。举例来说,南佛罗里达大学(USF)Christina Richards 实验室的研究生 Mariano Alvarez 正在研究 2010 墨西哥湾漏油事件对当地植物的影响。他们最初是用芯片在评估基因表达,但现在他们已经引入了 RNA 测序数据,以获得更为丰富的信息。
没有底线的检测
芯片检测的动态范围比较窄,在转录本丰度很低的情况下,RNA-seq 才是你正确的选择。
Tong 及其同事去年用 Illumina RNA-seq 平台和 Affymetrix 芯片,评估了大鼠肝脏在药物处理下的基因表达改变。他们发现,在检测丰度较高的基因时,RNA-seq 和芯片的结果基本一致。但在检测表达水平低的基因时,RNA-seq 更加准确。这一结论也得到了其他一些研究的支持。造成这种差异的主要原因是,当基因低水平表达时,芯片中结合探针的 cDNA 发出较弱的荧光,难以压倒背景荧光。
对于 RNA-seq 而言,覆盖度越高能检测的转录本水平就越低,没有绝对的下限。当然,RNA-seq 也没有绝对的检测上限。而芯片在检测表达量很高的基因时,可能会出现饱和。
生命力依然顽强
尽管 RNA-seq 有许多优势,但许多研究者还是在继续使用芯片,尤其是样本量比较大的研究。芯片在临床研究中也很吃香,因为它的数据处理又快又简单。
“芯片能提供高度一致的数据,分析软件也相当成熟,”Poon 说。“通过分析成百上千的样本,基因和 miRNA 的表达特征已经被赋予了临床上的诊断价值。”
“我会一直使用芯片,”MitoGenetics 公司的 Kirk Mantione 说。“我知道要做些什么,结果也更容易解读。”Mantione 使用芯片对自己开发的药物进行评估,在细胞系和动物中分析这些药物对基因表达的影响。芯片可以快速给出结果,展示药物对特定基因的作用。不过 Mantione 也希望用 RNA-seq 研究那些还不成熟的生物模型,或者寻找之前没有发现的转录本多态性。
有时候,人们继续使用芯片只是因为想要对新数据和旧数据进行比较,如果所有的数据都是以同样的方式获得的,比较起来自然更为容易。Affymetrix 公司建议大家先用芯片快速筛查大量样本,然后用这些结果指导 RNA-seq。此外,芯片也可以用来验证 RNA-seq 的数据。
RNA-seq 数据分析
RNA-seq 有非常广泛的应用,但没有哪个分析软件是万能的。科学家们一般会根据自己的研究对象和研究目标,采用不同的数据分析策略。现在人们已经发表了大量的 RNA-seq 和数据分析方案,对于刚入门的新手来说难免有些无所适从。
佛罗里达大学、加州大学 Irvine 分校等单位的研究人员在一月二十六日的 Genome Biology 杂志上发表文章,概述了 RNA-seq 生物信息学分析的现行标准和现有资源,为人们提供了一份带有注释的 RNA-seq 数据分析指南。这将成为开展 RNA-seq 研究的宝贵参考资料。
这份指南覆盖了 RNA-seq 数据分析的所有主要步骤,比如质量控制、读段比对、基因和转录本定量、差异性基因表达、功能分析、基因融合检测、eQTL 图谱分析等等。研究人员绘制的 RNA-seq 分析通用路线图(标准 Illumina 测序),将主要分析步骤分为前期分析、核心分析和高级分析三类。
前期预处理包括实验设计、测序设计和质量控制。核心分析包括转录组图谱分析、差异基因表达和功能分析。高级分析包括可视化、其他 RNA-seq 技术和数据整合。研究人员在文章中探讨了每个步骤所面临的挑战,也评估了一些数据处理方法的潜力和局限。此外,他们还介绍了 RNA-seq 数据与其他数据类型的整合。这种数据整合可以将基因表达调控与分子生理学和功能基因组学关联起来,如今越来越受到研究者的欢迎。
基因组表达分析:如何选择RNA-seq vs. 芯片的更多相关文章
- RNA -seq
RNA -seq RNA-seq目的.用处::可以帮助我们了解,各种比较条件下,所有基因的表达情况的差异. 比如:正常组织和肿瘤组织的之间的差异:检测药物治疗前后,基因表达的差异:检测发育过程中,不同 ...
- 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析
英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...
- 全基因组关联分析(Genome-Wide Association Study,GWAS)流程
全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...
- RNA seq 两种计算基因表达量方法
两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比 ...
- 你好,C++(20).4.2.2 表达并列条件选择的switch语句:如果……如果……如果……
4.2.2 表达并列条件选择的switch语句:如果……如果……如果…… 在现实世界中,还有这样一类特殊的条件选择: 如果明天是晴天,我就穿T恤: 如果明天是阴天,我就穿衬衣: 如果明天是雨天,我就 ...
- 全基因组关联分析(GWAS)的计算原理
前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...
- GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析
有很多概念需要明确区分: 人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男. 染色体区带命名:在标示一特定的带时需要包括4项:① ...
- Touch panel DTS 分析(MSM8994平台,Atmel 芯片)
Touch panel DTS 分析(MSM8994平台,Atmel 芯片) 在MSM8994平台,Touch panel的DTS写节点/kernel/arch/arm/boot/dts/qcom/m ...
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
随机推荐
- ABAP 常用函数
函数名 描述 SD_VBAP_READ_WITH_VBELN 根据销售订单读取表vbap中的信息EDIT_LINES 把READ_TEXT返回的LINES中的行按照TDFORMAT=“*”重新组织VI ...
- JAVA集合操作异常 ---------Collections.unmodifiableCollection
1.问题原因 这两天在做开发的时候,在一个首页的列表哪里操作了ArrayList集合,在做递归删除的时候用的是Iterator对象(至于为什么用,来个链接https://blog.csdn.net/m ...
- jar is specified twice.
Warning:Exception while processing task java.io.IOException: The same input jar [libs\afinal_0.5.1_b ...
- java 集合 Se HashTreeSet
Set接口 Set是Collection的子接口,与List相对 Set集合中的元素的特点是1,无序性 2,无下标3,无重复的元素 Set是个接口,所以无法直接创建对象,要依赖它的实现类来创建对象 ...
- javase中javax源码下载地址
OracleJDK 和 OpenJDK 源码都可以参考. OpenJDK 源码下载 http://hg.openjdk.java.net/jdk7/jdk7/jdk/file 我主要是想下载 java ...
- ORACLE grant权限
oracle的系统和对象权限 本文转自: http://hi.baidu.com/zhaojing_boy/blog/item/0ffe95091266d939e824885f.html alter ...
- 【Spider】学习使用XMLFeedSpider
前面写了学习CrawlSpider遇到的问题后,今天学XMLFeedSpider又出现了启动后没爬取到数据,但又不报错的情况 经过排查,发现又是一个粗心大意的错误: class SpiderUserX ...
- pta7-18奥运排行榜(模拟)
题目链接:https://pintia.cn/problem-sets/1101307589335527424/problems/1101314114867245056 题意:给n个国家,以及每个国家 ...
- i2c初步理解
引用自:http://www.cnblogs.com/zym0805/archive/2011/07/31/2122890.html I2C是由Philips公司发明的一种串行数据通信协议,仅使用两根 ...
- POJ3259 :Wormholes(SPFA判负环)
POJ3259 :Wormholes 时间限制:2000MS 内存限制:65536KByte 64位IO格式:%I64d & %I64u 描述 While exploring his many ...