卷积神经网络之GoogleNet:inceptionV3模型学习
Rethinking the Inception Architecture for Computer Vision
论文地址:https://arxiv.org/abs/1512.00567
Abstract
介绍了卷积网络在计算机视觉任务中state-of-the-art。分析现在现状,本文通过适当增加计算条件下,通过suitably factorized convolutions 和 aggressive regularization来扩大网络。并说明了取得的成果。
1. Introduction
介绍AlexNet后,推更深网络模型的提出。然后介绍GoogLeNet 考虑了内存和计算资源,五百万个参数,比六千万参数的 AlexNet 少12倍, VGGNet 则是AlexNet 的参数三倍多。提出了GoogLeNet 更适合于大数据的处理,尤其是内存或计算资源有限制的场合。原来Inception 架构的复杂性没有清晰的描述。本文主要提出了一些设计原理和优化思路。
2. General Design Principles
2.1避免特征表示瓶颈,尤其是在网络的前面。前馈网络可以通过一个无环图来表示,该图定义的是从输入层到分类器或回归器的信息流动。要避免严重压缩导致的瓶颈。特征表示尺寸应该温和的减少,从输入端到输出端。特征表示的维度只是一个粗浅的信息量表示,它丢掉了一些重要的因素如相关性结构。
2.2高纬信息更适合在网络的局部处理。在卷积网络中逐步增加非线性激活响应可以解耦合更多的特征,那么网络就会训练的更快。
2.3空间聚合可以通过低纬嵌入,不会导致网络表示能力的降低。例如在进行大尺寸的卷积(如3*3)之前,我们可以在空间聚合前先对输入信息进行降维处理,如果这些信号是容易压缩的,那么降维甚至可以加快学习速度。
2.4平衡好网络的深度和宽度。通过平衡网络每层滤波器的个数和网络的层数可以是网络达到最佳性能。增加网络的宽度和深度都会提升网络的性能,但是两者并行增加获得的性能提升是最大的。所以计算资源应该被合理的分配到网络的宽度和深度。
3. Factorizing Convolutions with Large Filter Size
GoogLeNet 网络优异的性能主要源于大量使用降维处理。这种降维处理可以看做通过分解卷积来加快计算速度的手段。在一个计算机视觉网络中,相邻激活响应的输出是高度相关的,所以在聚合前降低这些激活影响数目不会降低局部表示能力。
3.1. Factorization into smaller convolutions
大尺寸滤波器的卷积(如5*5,7*7)引入的计算量很大。例如一个 5*5 的卷积比一个3*3卷积滤波器多25/9=2.78倍计算量。当然5*5滤波器可以学习到更多的信息。那么我们能不能使用一个多层感知器来代替这个 5*5 卷积滤波器。受到NIN的启发,用下面的方法,如图进行改进。
5*5卷积看做一个小的全链接网络在5*5区域滑动,我们可以先用一个3*3的卷积滤波器卷积,然后再用一个全链接层连接这个3*3卷积输出,这个全链接层我们也可以看做一个3*3卷积层。这样我们就可以用两个3*3卷积级联起来代替一个 5*5卷积。如图4,5所示。
3.2. Spatial Factorization into Asymmetric Convolutions
空间上分解为非对称卷积,受之前启发,把3*3的卷积核分解为3*1+1*3来代替3*3的卷积。如图三所示,两层结构计算量减少33%。
4. Utility of Auxiliary Classifiers
引入了附加分类器,其目的是从而加快收敛。辅助分类器其实起着着regularizer的作用。当辅助分类器使用了batch-normalized或dropout时,主分类器效果会更好。
5. Efficient Grid Size Reduction
池化操作降低特征图大小,使用两个并行的步长为2的模块, P 和 C。P是一个池化层,然后将两个模型的响应组合到一起来更多的降低计算量。
6. Inception-v2
把7x7卷积替换为3个3x3卷积。包含3个Inception部分。第一部分是35x35x288,使用了2个3x3卷积代替了传统的5x5;第二部分减小了feature map,增多了filters,为17x17x768,使用了nx1->1xn结构;第三部分增多了filter,使用了卷积池化并行结构。网络有42层,但是计算量只有GoogLeNet的2.5倍。
7. Model Regularization via Label Smoothing
输入x,模型计算得到类别为k的概率
假设真实分布为q(k),交叉熵损失函数
最小化交叉熵等价最大化似然函数。交叉熵函数对逻辑输出求导
引入一个独立于样本分布的变量u(k)
8. Training Methodology
TensorFlow 。
batch-size=32,epoch=100。SGD+momentum,momentum=0.9。
RMSProp,decay=0.9,ϵ=0.1。
lr=0.045,每2个epoch,衰减0.94。
梯度最大阈值=2.0。
9. Performance on Lower Resolution Input
对于低分辨有图像,使用“高分辨率”receptive field。简单的办法是减小前2个卷积层的stride,去掉第一个pooling层。做了三个对比实验,实验结果
10. Experimental Results and Comparisons
实验结果和对比
11. Conclusions
提供了几个扩大规模的设计原则卷积网络,并在其背景下进行了研究初始架构。这个指导可以导致很高的性能视觉网络有一个相对较小的计算成本比较简单,更单一架构。参数有效减小,计算量降低。我们还表明,输入分辨率79×79仍可以达到高达高质量结果。这可能有助于检测较小物体的系统。 我们研究了如何在神经网络中进行因式分解和积极维度降低可以导致网络具有相对低的计算成本,同时保持高质量。较低参数计数和附加正则化与批量归一化辅助分类器和标签平滑的组合允许在相对适度的训练集上训练高质量网络。
本文参考的博客
https://arxiv.org/abs/1512.00567
http://blog.csdn.net/KangRoger/article/details/69218625
http://blog.csdn.net/zhangjunhit/article/details/53894221
卷积神经网络之GoogleNet:inceptionV3模型学习的更多相关文章
- 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...
- [DeeplearningAI笔记]卷积神经网络2.9-2.10迁移学习与数据增强
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9迁移学习 迁移学习的基础知识已经介绍过,本篇博文将介绍提高的部分. 提高迁移学习的速度 可以将迁移学习模型冻结的部分看 ...
- 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...
- TensorFlow学习笔记(四)图像识别与卷积神经网络
一.卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. ...
- tensorflow学习笔记——图像识别与卷积神经网络
无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体 ...
- 学习笔记TF027:卷积神经网络
卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像 ...
- 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...
- Python机器学习笔记:卷积神经网络最终笔记
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...
- 卷积神经网络 part1
[任务一]视频学习心得及问题总结 根据下面三个视频的学习内容,写一个总结,最后列出没有学明白的问题. [任务二]代码练习 在谷歌 Colab 上完成代码练习,关键步骤截图,并附一些自己的想法和解读. ...
随机推荐
- PHP 统计一维数组value同样的元素的个数num,并将其转化为下标为数字,值是value和num的二维数组
近期做一个项目.从数据库查询某个字段得到一个数组key是数字值是channel的一维数组$res,现须要将这个数组变成键是数字值是channel和num(num为同样channel的数量,默觉得0). ...
- oracle-db安装
在LINUX平台上手动创建多个实例(oracle11g) http://blog.csdn.net/sunchenglu7/article/details/39676659 安装完桌面与数据库软件后, ...
- 家庭记账本web开发
这个系统的整体结构: GitHub:https://github.com/lq1998lq/Test.git com.action包: package com.action; import java. ...
- css 新单位 fr
fr是css刚出的一个新的单位,目前经过测试在chrome和firefox是可以支持的 举个案列,拿一个网格布局来说吧 <!DOCTYPE html> <html lang=&quo ...
- redis设计与实现-数据结构
1,redis存储有5种数据对象,有7种数据结构底层实现 2,sds简单字符串 不直接使用字符数组或是string 封装了长度变量,加快获得字符串长度 杜绝缓冲区溢出(拼接字符串的时候不会因为内存里连 ...
- 获取TypeError:__init __()缺少1个需要的位置参数:'on_delete'当试图添加父表后面的子表
解决办法:https://stackoverflow.com/questions/44026548/getting-typeerror-init-missing-1-required-position ...
- Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(4)
Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(4) 1.老样子,首先运行tcl脚本建工程: Vi ...
- MySQL5.7(5.6)GTID环境下恢复从库思路方法(转发)
要讨论如何恢复从库,我们得先来了解如下一些概念: GTID_EXECUTED:它是一组包含已经记录在二进制日志文件中的事务集合 GTID_PURGED:它是一组包含已经从二进制日志删除掉的事务集合. ...
- excel技巧--文本拆分合并
如果像上图那样将一单元格内拆分成同等大小的字词,可用如下步骤: 1.将该单元格的宽度缩至拆分词的大小: 2.选择同列的适当的单元格,用于填充拆分的字符: 3.点击“开始”-->填充-->两 ...
- ios导航栏和tabbar的坑
多年不写ios,目前重构项目,发现navBar和tabbar需要注意的点,记录备忘 translucent属性会导致view起始点的变化,默认为透明,和设计图有色差,改成不透明以后,坐标位置有变化,修 ...