noi.ac 257 B
题目
区间[l,r]是连续满足,[l,r]中的数字的权值区间是一段连续的。多次询问可以完包含一个区间的连续区间。区间长度尽量小,如果有多个输出左端点靠左的。
分析:
[l,r]区间是连续的,当且仅当区间内有(r-l)*2个相邻的关系,即(2,3),(6,5)都是相邻关系。那么将询问离线,不断维护左端点到当前点的区间内的相邻关系的数量。
即当前点是i,那么如果pos[a[i]-1]<=i的话,在1~pos[a[i]-1]这些位置+1,表示从这些位置到i的区间,增加一个相邻关系。
如果一个点j开始到i的相邻关系的数量等于(i-j),那么说明(j~i)区间是连续区间,这里两个相邻关系只算了一个。所以初始时在每个位置增加数字下标即可。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline LL read() {
LL x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
pa T[N << ];
int tag[N << ], pos[N], a[N], ans1[N], ans2[N], n;
set< pa > s;
vector< pa > q[N]; pa operator + (pa A, pa B) { return A.first > B.first ? A : B; } inline void col(int x,int y) { T[x].first += y, tag[x] += y; }
inline void pushdown(int rt) { col(rt << , tag[rt]); col(rt << | , tag[rt]); tag[rt] = ; } void build(int l,int r,int rt) {
if (l == r) { T[rt] = pa(l, l); return ; }
int mid = (l + r) >> ;
build(l, mid, rt << ); build(mid + , r, rt << | );
T[rt] = T[rt << ] + T[rt << | ];
}
void update(int l,int r,int rt,int L,int R) { if (L <= l && r <= R) { T[rt].first ++, tag[rt] ++; return ; }
int mid = (l + r) >> ;
if (tag[rt]) pushdown(rt);
if (L <= mid) update(l, mid, rt << , L, R);
if (R > mid) update(mid + , r, rt << | , L, R);
T[rt] = T[rt << ] + T[rt << | ];
}
pa query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return T[rt];
if (tag[rt]) pushdown(rt);
int mid = (l + r) >> ;
if (R <= mid) return query(l, mid, rt << , L, R);
else if (L > mid) return query(mid + , r, rt << | , L, R);
else return query(l, mid, rt << , L, R) + query(mid + , r, rt << | , L, R);
}
bool check(pa x,int i) {
pa now = query(, n, , , -x.first);
if (now.first == i) {
ans1[x.second] = now.second, ans2[x.second] = i;
return ;
}
return ;
}
int main() {
n = read();
for (int i = ; i <= n; ++i) a[i] = read(), pos[a[i]] = i;
int m = read();
for (int i = ; i <= m; ++i) {
int l = read(), r = read(); q[r].push_back(pa(-l, i));
}
build(, n, );
for (int i = ; i <= n; ++i) {
for (int j = ; j < (int)q[i].size(); ++j) s.insert(q[i][j]);
if (a[i] > && pos[a[i] - ] <= i) update(, n, , , pos[a[i] - ]);
if (a[i] < n && pos[a[i] + ] <= i) update(, n, , , pos[a[i] + ]);
while (!s.empty())
if (check(*s.begin(), i)) s.erase(s.begin());
else break;
}
for (int i = ; i <= m; ++i) printf("%d %d\n", ans1[i], ans2[i]);
return ;
}
noi.ac 257 B的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- 【前端】NodeJs包管理工具NPM
NPM是随同NodeJS一起安装的包管理工具,能解决NodeJS部署上的很多问题. 测试是否安装成功,出现版本提示表示安装成功. npm -v NPM常用命令 官方文档:https://www.npm ...
- 转:jQuery选择器大全(48个代码片段+21幅图演示)
选择器是jQuery最基础的东西,本文中列举的选择器基本上囊括了所有的jQuery选择器,也许各位通过这篇文章能够加深对jQuery选择器的理解,它们本身用法就非常简单,我更希望的是它能够提升个人编写 ...
- Windows 7 任务栏图标消失(变透明,仍然占有地方,但是点击无反应)的解决方法
解决方案:清理资源管理器缓存(重启资源管理器) 1.打开程序管理器(ctrl+shift+esc) 2.在进程那里找到"explorer.exe",然后按结束进程 3.然后在文件( ...
- maven 错误列表
1.编译错误 qcadoo-maven-plugin>mvn clean install No compiler is provided in this environment. Perhaps ...
- X-Pack权限控制之给Kibana加上登录控制以及index_not_found_exception问题解决
无法查看索引下的日志问题解决 好事多磨,我们还是无法在Kibana下看到数据,究竟是怎么一回事呢? 笔者再次查看了logstash的控制台,又发现了如下错误: logstash outputs ela ...
- 细数垃圾邮箱客户端 Live Mail 的BUG
以前用XP系统,里面自带的有outlook,使用中还行,不过bug也不少,常见的如 1.查找,邮件多了后,常常查找不到: 2.有时收件箱什么的突然空白,或部分邮件不见了(2G大小限制,超过了就不能做移 ...
- Oracle Spatial中SDO_Geometry说明
Oracle Spatial中SDO_Geometry说明 在ArcGIS中通过SDE存储空间数据到Oracle中有多种存储方式,分别有:二进制Long Raw .ESRI的ST_Geometry以及 ...
- Docker Java应用日志时间和容器时间不一致
1.在docker容器和系统时间不一致是因为docker容器的原生时区为0时区,而国内系统为东八区. 2.还有容器中运行的java应用打出的日志时间和通过date -R方式获取的容器标准时间有八个小时 ...
- Zookeeper入门(三)之工作流
一旦ZooKeeper集合启动,它将等待客户端连接.客户端将连接到ZooKeeper集合中的一个节点.它可以是leader或follower节点.一旦客户端被连接,节点将向特定客户端分配会话ID并向该 ...
- clock gating check
在 sta 分析时,经常会碰到 clock gating cell (一般是 ICG cell 或者 latch)引起的 violation,这种 violation 很常见,而且往往很难修. 为什么 ...