机器学习入门-文本数据-构造Tf-idf词袋模型(词频和逆文档频率) 1.TfidfVectorizer(构造tf-idf词袋模型)
TF-idf模型:TF表示的是词频:即这个词在一篇文档中出现的频率
idf表示的是逆文档频率, 即log(文档的个数/1+出现该词的文档个数) 可以看出出现该词的文档个数越小,表示这个词越稀有,在这篇文档中也是越重要的
TF-idf: 表示TF*idf, 即词频*逆文档频率
词袋模型不仅考虑了一个词的词频,同时考虑了这个词在整个语料库中的重要性
代码:
第一步:使用DataFrame格式处理数据,同时数组化数据
第二步:定义函数,进行分词和停用词的去除,并使用‘ ’连接去除停用词后的列表
第三步:使用np.vectorizer向量化函数,同时调用函数进行分词和停用词的去除
第四步:使用TfidfVectorizer函数,构造TF-idf的词袋模型
import pandas as pd
import numpy as np
import re
import nltk #pip install nltk corpus = ['The sky is blue and beautiful.',
'Love this blue and beautiful sky!',
'The quick brown fox jumps over the lazy dog.',
'The brown fox is quick and the blue dog is lazy!',
'The sky is very blue and the sky is very beautiful today',
'The dog is lazy but the brown fox is quick!'
] labels = ['weather', 'weather', 'animals', 'animals', 'weather', 'animals'] # 第一步:构建DataFrame格式数据
corpus = np.array(corpus)
corpus_df = pd.DataFrame({'Document': corpus, 'categoray': labels}) # 第二步:构建函数进行分词和停用词的去除
# 载入英文的停用词表
stopwords = nltk.corpus.stopwords.words('english')
# 建立词分割模型
cut_model = nltk.WordPunctTokenizer()
# 定义分词和停用词去除的函数
def Normalize_corpus(doc):
# 去除字符串中结尾的标点符号
doc = re.sub(r'[^a-zA-Z0-9\s]', '', string=doc)
# 是字符串变小写格式
doc = doc.lower()
# 去除字符串两边的空格
doc = doc.strip()
# 进行分词操作
tokens = cut_model.tokenize(doc)
# 使用停止用词表去除停用词
doc = [token for token in tokens if token not in stopwords]
# 将去除停用词后的字符串使用' '连接,为了接下来的词袋模型做准备
doc = ' '.join(doc) return doc # 第三步:向量化函数和调用函数
# 向量化函数,当输入一个列表时,列表里的数将被一个一个输入,最后返回也是一个个列表的输出
Normalize_corpus = np.vectorize(Normalize_corpus)
# 调用函数进行分词和去除停用词
corpus_norm = Normalize_corpus(corpus) # 第四步:使用TfidVectorizer进行TF-idf词袋模型的构建
from sklearn.feature_extraction.text import TfidfVectorizer Tf = TfidfVectorizer(use_idf=True)
Tf.fit(corpus_norm)
vocs = Tf.get_feature_names()
corpus_array = Tf.transform(corpus_norm).toarray()
corpus_norm_df = pd.DataFrame(corpus_array, columns=vocs)
print(corpus_norm_df.head())
机器学习入门-文本数据-构造Tf-idf词袋模型(词频和逆文档频率) 1.TfidfVectorizer(构造tf-idf词袋模型)的更多相关文章
- 机器学习入门-文本数据-构造Ngram词袋模型 1.CountVectorizer(ngram_range) 构建Ngram词袋模型
函数说明: 1 CountVectorizer(ngram_range=(2, 2)) 进行字符串的前后组合,构造出新的词袋标签 参数说明:ngram_range=(2, 2) 表示选用2个词进行前后 ...
- 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)
函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string) 用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...
- 【Lucene3.6.2入门系列】第14节_SolrJ操作索引和搜索文档以及整合中文分词
package com.jadyer.solrj; import java.util.ArrayList; import java.util.List; import org.apache.solr. ...
- 请转发!简单2分钟制作无接触式小区进出微信登记表!全免费!数据安全!所有数据均存在创建人登录的QQ腾讯文档里!
全免费!数据安全!所有数据均存在创建人登录的QQ腾讯文档里! 阻击疫情到了最吃劲的关键期,大家能不出门就不出门,但免不了出去买个菜.取个快递啥的,每次出入的时候,社区同志都在认真拿着笔记录每个进出信息 ...
- 机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)
函数说明 1.LDA(n_topics, max_iters, random_state) 用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_i ...
- 机器学习入门-文本特征-word2vec词向量模型 1.word2vec(进行word2vec映射编码)2.model.wv['sky']输出这个词的向量映射 3.model.wv.index2vec(输出经过映射的词名称)
函数说明: 1. from gensim.model import word2vec 构建模型 word2vec(corpus_token, size=feature_size, min_count ...
- C#word(2007)操作类--新建文档、添加页眉页脚、设置格式、添加文本和超链接、添加图片、表格处理、文档格式转化
转:http://www.cnblogs.com/lantionzy/archive/2009/10/23/1588511.html 1.新建Word文档 #region 新建Word文档/// &l ...
- (大数据工程师学习路径)第二步 Vim编辑器----Vim文档编辑
一.vim重复命令 1.重复执行上次命令 在普通模式下.(小数点)表示重复上一次的命令操作 拷贝测试文件到本地目录 $ cp /etc/protocols . 打开文件进行编辑 $ vim proto ...
- 【机器学习】机器学习入门02 - 数据拆分与测试&算法评价与调整
0. 前情回顾 上一周的文章中,我们通过kNN算法了解了机器学习的一些基本概念.我们自己实现了简单的kNN算法,体会了其过程.这一周,让我们继续机器学习的探索. 1. 数据集的拆分 上次的kNN算法介 ...
随机推荐
- 新版appium 支持name定位的方法(没试 记录再此)
查找路径:appium-desktop\resources\app\node_modules\appium\node_modules\appium-android-driver\build\lib 修 ...
- BIO & NIO & NIO常见框架
BIO & NIO BIO - Blocking IO - 同步式阻塞式IO --- UDP/TCP NIO - New IO - 同步式非阻塞式IO AIO - Asynchronous ...
- 服务网关zuul之五:熔断
路由熔断 当我们的后端服务出现异常的时候,我们不希望将异常抛出给最外层,期望服务可以自动进行一降级.Zuul给我们提供了这样的支持.当某个服务出现异常时,直接返回我们预设的信息. 如果没有配置fall ...
- 学习笔记之Lazy evaluation
Lazy evaluation - Wikipedia https://en.wikipedia.org/wiki/Lazy_evaluation In programming language th ...
- [转][Oracle][null]
trim(nvl(ipaddress,'')) != '' 这段SQL 并没有像 MSSQL IsNull 一样返回不含空白或null 的内容 经尝试发现 trim('') 为 null a fr ...
- Levenberg-Marquardt 的 MATLAB 代码
参考资料: 1,<精通MATLAB最优化计算(第2版)>作者:龚纯 等 的 第9章 9.3 小节 L-M 法 2,<数值分析> 作者:Timothy Sauer 的 第4章 4 ...
- HDOJ 2005 第几天?
#include<iostream> using namespace std; ] = { ,,,,,,,,,,, }; ] = { ,,,,,,,,,,, }; bool isRYear ...
- dell 7447加装SSD
老本加新件:) dell 7447第一款游匣? 14年冬入手,陪伴在下已有4年 一.需要拆机看接口(不知道的话),拆机无流程,网上一大把,此处不再赘述. 二.硬盘接口知识扩展: SATA3 m2接口有 ...
- java加减天数
指定日期的加减天数 public static String setDay(int num,String newDate) throws ParseException{ SimpleDateForma ...
- html 网页生产pdf文件
在nuget中安装组件 Install-Package CPechkin https://www.nuget.org/packages/CPechkin/ 根据html生产pdf文件 using Sy ...