BZOJ 1076 [SCOI2008]奖励关

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有$n$种,系统每次抛出这$n$种宝物的概率都相同且相互独立。也就是说,即使前$k-1$次系统都抛出宝物$1$(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为$\frac 1 n$。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合$S_i$。只有当$S_i$中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数$k$和$n$,即宝物的数量和种类。以下$n$行分别描述一种宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为$1到$n$),以$0$结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

$1<=k<=100$,$1<=n<=15$,分值为$[-10^6,10^6]$内的整数。


注意到n的值很小,考虑概率DP配合状态压缩储存状态。

设$f[i][j]$为从第$i$次开始接宝物,并且当前状态为$j$的期望值。

若当前宝物可以被接住,则$f[i][j]=f[i][j]+max(f[i+1][j],f[i+1][j|p[k]]+v[k])$

否则,$f[i][j]+=f[i+1][j]$

实现不难,上代码:

 #include<iostream>
#include<cstdio>
#define foru(i,x,y) for(int i=x;i<=y;i++)
using namespace std;
double f[][];
int n,k,t,v[],d[],p[];
int main(){
scanf("%d%d",&n,&k);
foru(i,,)p[i]=<<(i-);
foru(i,,k){
scanf("%d",&v[i]);
while(scanf("%d",&t),t)
d[i]+=p[t];
}
for(int i=n;i;i--)
foru(j,,p[k+]-){
foru(l,,k)
((d[l]&j)==d[l])?f[i][j]+=max(f[i+][j],f[i+][j|p[l]]+v[l]):f[i][j]+=f[i+][j];
f[i][j]/=k;
}
printf("%.6lf\n",f[][]);
}

bzoj1076 奖励关(概率dp)(状态压缩)的更多相关文章

  1. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  2. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  3. bzoj1076 奖励关 期望dp

    题目传送门 题目大意:总共有k次弹出宝物的机会,宝物共有n种,弹出不同的宝物的概率相同的,是每个宝物都有价值,和选择这个宝物的限制(必须具有特定的宝物),问最后的最优期望是多少. 思路:“正向推概率, ...

  4. [BZOJ1076][SCOI2008]奖励关(概率DP)

    Code #include <cstdio> #include <algorithm> #include <cstring> #define N 110 #defi ...

  5. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  6. hdu4336Card Collector 概率dp+状态压缩

    //给n个卡片每次出现的概率,求全部卡片都出现的须要抽的次数的期望 //dp[i]表示在状态的情况下到全部的卡片都出现的期望 //dp[i] = 1 + p1*dp[i] + ${p2[j]*dp[i ...

  7. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

  8. 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学

    神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...

  9. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

随机推荐

  1. salt如何查看文档帮助

    1.查看普通模块和函数使用方法 salt 'minion' sys.doc  module_name salt ‘minion'  sys.doc module_name.function_name ...

  2. Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory

    题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...

  3. HCTF2018-admin

    记录一道比较有意思的题目,对于萌新来说能学到很多东西orz.. 三种解法: 1: flask session 伪造 2: unicode欺骗 3: 条件竞争 注册账户查看源码: 发现提示,根据提示和题 ...

  4. javaweb01

    Java web应用由一组servlet.HTML页,类,以及它可以被绑定的资源构成,它可以在各种供应商提供的实现servlet规范容器中运行javaweb包括这些:Servlet jsp 实用类 静 ...

  5. 使用java(jdbc)向mysql中添加数据时出现“unknown column……”错误

    错误情况如题,出现这个错误的原因是这样的: 在数据库中,插入一个字符串数据的时候是需要用单引号引起来的. 而下面的代码,注意看: sta.executeUpdate("INSERT INTO ...

  6. go语言学习资料

    Go语言圣经(中文版): https://docs.hacknode.org/gopl-zh/index.html Go语言高级编程(Advanced Go Programming) https:// ...

  7. windows支持apache、mysql、php集成环境推荐wampserver3.2 64位版本

    对英文不感冒的同学很容易下载到更新包,而且官方的下载速度很慢,此文件为官方原版下载,现在分享给大家. 链接:https://pan.baidu.com/s/1LYyJi6FddvkQQNrLp4L6W ...

  8. 以KNN为例用sklearn进行数据分析和预测

    准备 相关的库 相关的库包括: numpy pandas sklearn 带入代码如下: import pandas as pd import numpy as np from sklearn.nei ...

  9. 前端快速构建神器vue-cli,windows下安装并且构建前端项目

    1.nodejs官网http://nodejs.cn/下载安装包,傻瓜式安装即可 2.dos命令查询node的版本 node -v 查询版本号 npm -v 查询npm包管理版本 3.安装国内镜像 n ...

  10. Linux-exec族函数

    1.为什么需要exec族函数 (1).fork子进程是为了执行新程序(fork创建子进程后,子进程和父进程同时被OS调度执行,因此子程序可以单独的执行一个程序,这样程序宏观上将会和父进程程序同时进行) ...