Metric space,open set
引入:绝对值
distance\(:|a-b|\)
properties\(:(1)|x| \geq 0\),for all \(x \in R\),and \("=” \Leftrightarrow x=0\)
\((2):|a-b|=|b-a|(|x|=|-x|)\)
\((3):|x+y| \leq |x|+|y|\),for all \(x,y \in R\)
(\(|a-c| \leq |a-b|+|b-c|\))
度量空间
Distance function/metric space
Let \(X\) be a set.
\(\underline{Def:}\)A function \(X \times X \stackrel{d}{\longrightarrow}\mathbb{R}\)is called a distance function on \(X\)
1.\(\forall x,y\in X\),\(d(x,y)\geq 0\) and \("=” \Leftrightarrow x=y\)
2.\(\forall x,y\in X\),\(d(x,y)=d(y,x)\)
3.\(\forall x,y,z \in X\),\(d(x,z)\leq d(x,y)+d(y,z)\)
Example:
\(\mathfrak{A}:\)
1.\(x=(x_1,x_2,\dots,x_m),y=(y_1,y_2,\dots,y_m)\in \mathbb{R}^n\)
\(d_2(x,y):=\sqrt{|x_1-y_1|^2+\cdots+|x_m-y_m|^2}=|x-y|\)
\(d_2\) is a metric on \(\mathbb{R}^n\)(Cauchy inequality)
2.\(d_1(x,y):=|x_1-y_1|+|x_2-y_2|+\cdots+|x_m-y_m|\)
3.\(d_{\infty}(x,y)=max\{|x_1-y_1|,\dots,|x_m-y_m|\}\)
\(\mathfrak{B}:\)
X:a set.For \(x,y \in X\),let \[d(x,y):=\left\{
\begin{aligned}
1&if&x\leq y
\\
0&if&x =y
\end{aligned}
\right.
\]
\(d(x,y)\Rightarrow\)the discrete metric
开集,闭集
we may generalize the definitions about limits and convergence to metric space
\(\underline{Def}\) Let \((X,d)\) be a metric space,\(a_n(n \in \mathbb{N})\)be a seq in \(\mathrm{X}\).and \(\mathcal{L}\)in X
\(a_n(n \in \mathbb{N})\)converges to \(\mathcal{L}\)
(1)For \(r \geq 0\)and \(x_0 \in X\),we let \(B_r(x_0)=\{x \in X|d(x,x_0)\leq r\}\)(open ball)
(2).S is an open set(of\((X,d)\)),if \(\forall x \in S\),\(\exists r >0\)
(\(B_r(x_0)\subset S\))open ball \(\Rightarrow\)open set
EX:
\((X,d):\)metric space.\(x_0 \in X,r \geq 0\)
Show that:(1)\(B_r(x_0)\)is open
(2)\(\{x \in X|d(x,x_0)> r\}\)is open
warning:A subset \(S\) of a topological space \((X, \mathcal{T})\) is said to be clopen if it is both open and closed in \((X, \mathcal{T})\)
Example. \(\quad\) Let \(X=\{a, b, c, d, e, f\}\) and
\[
\tau_{1}=\{X, \emptyset,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e, f\}\}
\]
We can see:
(i) the set \(\{a\}\) is both open and closed;
(ii) the set \(\{b, c\}\) is neither open nor closed;
(iii) the set \(\{c, d\}\) is open but not closed;
(iv) the set \(\{a, b, e, f\}\) is closed but not open.
In a discrete space every set is both open and closed, while in an indiscrete space\((X, \tau),\) all subsets of \(X\) except \(X\) and \(\emptyset\) are neither open nor closed.
Metric space,open set的更多相关文章
- [实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间
1 回忆: $$\bex \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbo ...
- 度量空间(metric space)
一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...
- 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...
- 关于METRIC SPACE中的一些概念对比(sequence and net)
由于LaTeX 和其他的编辑软件都不太好用,所以采用手写笔记的方式. ——一个想学代几的大二小萌新
- Hilbert space
Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- Metric Learning度量学习:**矩阵学习和图学习
DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553 一篇metric learning(DML)的综述文章,对DML的意义.方 ...
- 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...
- topological space
\(\underline{Def:}\)A topology space \(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\un ...
随机推荐
- bestphp's revenge
0x00 知识点 1利用PHP原生类来构造POP链 本题没有可以利用的类,没有可以利用的类就找不到POP链所以只能考虑PHP原生类 我们先来解释一下什么是POP链 POP:面向属性编程 在二进制利用时 ...
- Java编译器 & Java解释器 & JVM
转自:https://www.cnblogs.com/chengdabelief/p/6576320.html JVM JVM有自己完善的硬件架构,如处理器.堆栈(Stack).寄存器等,还具有相应的 ...
- kube-controller-manager配置详解
KUBE_MASTER="--master=http://10.83.52.137:8080" KUBE_CONTROLLER_MANAGER_ARGS=" "
- 洛谷 P1709 隐藏口令
题目描述 有时候程序员有很奇怪的方法来隐藏他们的口令.Binny会选择一个字符串S(由N个小写字母组成,5<=N<=5,000,000),然后他把S顺时针绕成一个圈,每次取一个做开头字母并 ...
- 前后端分离java、jwt项目进行CORS跨域、解决非简单请求跨域问题、兼容性问题
情况描述: 最近在部署一个前后端分离的项目出现了跨域问题*, 项目使用jwt进行鉴权,需要前端请求发起携带TOKEN的请求*,请求所带的token无法成功发送给后端, 使用跨域后出现了兼容性问题:Ch ...
- 反编译查看printf()的方法
源代码: package test2; public class ExplorationJDKSource { /** * @param args */ public static void main ...
- 72)MFC测试动态共享库
动态共享库: 首先我建立一个新的动态库: 然后不选择空项目了,因为我们普通的cpp文件 入口是main win32入口是winmain 那么这个动态库的入口在哪里 我们就是为了看一看: 出来这样 ...
- 吴裕雄--天生自然 JAVASCRIPT开发学习: 变量提升
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- LNMP安装问题
查什么占用了端口 netstat -nlp |grep :80 root@zzx:/usr/local/mysql# netstat -nlp |grep :80tcp 0 ...
- leetcode 690.员工的重要性
题目: 给定一个保存员工信息的数据结构,它包含了员工唯一的id,重要度 和 直系下属的id. 比如,员工1是员工2的领导,员工2是员工3的领导.他们相应的重要度为15, 10, 5.那么员工1的数据结 ...