Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).Description

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

因为做差分约束的题目不能保证图的联通,所以要建立超级源点,也可以直接将每一个点放入队列中,因为若图中有两个联通分量,只能便利第一个不能访问第二个,不能保证图的另一部分不存在负环。

所以这个题目要先跑一遍D(0)就是超级源点,然后若存在负环即无解就不求1——N的距离了,有解再求,两遍SPFA。

但是在看RQ的博客的时候发现了一个特殊的建图方式,因为编号小的一定在编号大的左边,我没有考虑,所以这个题数据比较弱,然后下面的代码。

AC代码1:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10; struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
}; struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
} void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
} int bellmanford(int s)
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==s?0:INF;
Q.push(s); while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF; int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=1;i<=n;i++)
BF.AddEdge(0,i,0);
if(BF.bellmanford(0)!=-1) printf("%d\n",BF.bellmanford(1));
else puts("-1");
}
return 0;
}
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10; struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
}; struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
} void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
} int bellmanford()
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==1?0:INF;
Q.push(1); while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF; int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=2;i<=n;i++)
BF.AddEdge(i,i-1,0);
printf("%d\n",BF.bellmanford());
}
return 0;
}

图论--差分约束--POJ 3169 Layout(超级源汇建图)的更多相关文章

  1. 图论--差分约束--POJ 3159 Candies

    Language:Default Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 43021   Accep ...

  2. 图论--差分约束--POJ 1364 King

    Description Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen p ...

  3. 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  4. 差分约束系统 POJ 3169 Layout

    题目传送门 题意:有两种关系,n牛按照序号排列,A1到B1的距离不超过C1, A2到B2的距离不小于C2,问1到n的距离最大是多少.如果无限的话是-2, 如果无解是-1 分析:第一种可以写这样的方程: ...

  5. 图论--差分约束--POJ 2983--Is the Information Reliable?

    Description The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years a ...

  6. 图论--差分约束--POJ 1201 Intervals

    Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 30971 Accepted: 11990 Descripti ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  9. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

随机推荐

  1. Java 给 PowerPoint 文档添加背景颜色和背景图片

    在制作Powerpoint文档时,背景是非常重要的,统一的背景能让Powerpoint 演示文稿看起来更加干净美观.本文将详细讲述如何在Java应用程序中使用免费的Free Spire.Present ...

  2. go 内置函数

    一.什么是内置函数? 二.内置函数有哪些? 名称 说明 close 用于管道通信 len.cap len 用于返回某个类型的长度或数量(字符串.数组.切片.map 和管道):cap 是容量的意思,用于 ...

  3. C语言 刷新缓冲区

    fflush int fflush(FILE* stream); 用于清空文件缓冲区,如果文件是以写的方式打开 的,则把缓冲区内容写入文件. eg: 1. #include <stdio.h&g ...

  4. Javascript cookie和session

    一.cookie: 在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是为了解决这个问题,第一次登录 ...

  5. Java 数据持久化系列之 HikariCP (一)

    在上一篇<Java 数据持久化系列之池化技术>中,我们了解了池化技术,并使用 Apache-common-Pool2 实现了一个简单连接池,实验对比了它和 HikariCP.Druid 等 ...

  6. 【C#】写一个支持多人聊天的TCP程序

    碎碎念 先谈谈我们要实现的效果:客户端可以选择要聊天的对象,或者直接广播消息(类似QQ的私聊和群消息) 那么,该如何实现呢? 首先明确的是,要分客户端和服务器端两个部分(废话) 客户端:选择要发送的对 ...

  7. 37 net 网络编程

    InetAddress:此类表示互联网协议 (IP) 地址. Stringbuilder getHostAddress() 返回 IP 地址. Stringbuilder getHostName() ...

  8. 实战if-else 过多详解

    1.本文实例代码仅仅是俩个小例子. package com.example.demo.pattern.ifElse; import java.util.HashMap; import java.uti ...

  9. 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号

    算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...

  10. MAC 上brew 更新 出错

    在MAC上brew update的时候出现报错:Error: /usr/local must be writable! 错误,在该文章中也给出解决办法(sudo chown -R $(whoami) ...