0 递归

斐波那契数列定义:

$F(n)=\left\{\begin{matrix}
0, & n=0\\
1, & n=1\\
F(n-1)+F(n-2), & n>1
\end{matrix}\right.$

递归解法最直观,但是复杂度也最高:$O(2^n)$

 int Fibonacci(int n)
{
if (n <= ) //细节可以处理非法输入
return ;
else if ( == n)
return ;
return Fibonacci(n - ) + Fibonacci(n - );
}

为了避免重复计算,可以将每一步计算得到的$F(i)$存起来,这样的话时间复杂度降为$O(n)$,但空间复杂度升为$O(n)$。

1 通项

求解通项的方法有好几种,下面展示一种用线性代数求解的方法:

斐波那契数列的递推公式是二阶差分方程,先用一点小技巧将其化为一阶:

$$
\begin{cases}
F_{k+2}=F_{k+1}+F_{k}& \text{}\\
F_{k+1}=F_{k+1}& \text{}\\
\end{cases}$$

我们令$u_k=\begin{bmatrix}
F_{k+1}\\
F_{k}\\
\end{bmatrix}$,那么$u_{k+1}=\begin{bmatrix}
F_{k+2}\\
F_{k+1}\\
\end{bmatrix}=\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}u_k$。

矩阵$A=\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}$,令$det(A-\lambda I)=\lambda^2-\lambda-1=0$,求得$\lambda=\frac{1\pm \sqrt5}{2}$,对应于两个特征值的特征向量为$x_1=\begin{bmatrix}
\lambda_1\\
1\\
\end{bmatrix},x_2=\begin{bmatrix}
\lambda_2\\
1\\
\end{bmatrix}$。
求得特征值和特征向量后,我们将$u_0=\begin{bmatrix}
F_1\\
F_0\\
\end{bmatrix}=\begin{bmatrix}
1\\
0\\
\end{bmatrix}=c_1x_1+c_2x_2$,解得$c_1=-\frac{1}{\sqrt5}, c_2=\frac{1}{\sqrt5}$

$u_k=S\Lambda^{k}c=\begin{bmatrix}
c_1\lambda_1^{k+1}+c_2\lambda_2^{k+1}\\
c_1\lambda_1^{k}+c_2\lambda_2^{k}\\
\end{bmatrix}$

所以通项公式可以表示为$F(n)=C_1\lambda_1^n+C_2\lambda_2^n$。

故斐波那契数列的通项公式为:
$F(n)=\frac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n]$

用公式求解的复杂度为$O(1)$,但是由于无理数在计算机中的存储不是精确的,所以结果的精度很难保证。

2 分治

通过矩阵形式的递推:

$$\begin{bmatrix}
F(n)\\
F(n-1)
\end{bmatrix}=\begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}\begin{bmatrix}
F(n-1)\\
F(n-2)
\end{bmatrix}$$

不断向下递推,可以得到:

$$\begin{bmatrix}
F(n)\\
F(n-1)
\end{bmatrix}={\begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}}^{n-1}\begin{bmatrix}
F(1)\\
F(0)
\end{bmatrix}$$

接下来就是求解矩阵的高次方,通过快速幂(https://baike.baidu.com/item/快速幂/5500243?fr=aladdin)可以在$O(logn)$时间内进行计算:
整数的快速幂代码:

 int QuickPow(int a,int n)
{
int ans = ;
while (n)
{
if (n & )
ans *= a;
a *= a;
n >>= ;
} return ans;
}
 // 递归版本
int raise(int base, int exp) {
if (exp == )
return ;
int half = raise(base, exp / );
if (exp % )
return base * half * half;
else
return half * half;
}

将传入的参数改为矩阵,乘法改为矩阵乘法,就可以得到矩阵快速幂:

以二阶矩阵为例,求解斐波那契数列:

 #define _CRT_SECURE_NO_WARNINGS

 #include <iostream>

 using namespace std;

 struct Matrix {
int a[][];
}base,ans; Matrix multi(Matrix a, Matrix b)
{
Matrix res;
for (int i = ; i < ; i++) //第i行
{
for (int j = ; j < ; j++) //第j列
{
res.a[i][j] = ;
for (int k = ; k < ; k++)
res.a[i][j] += a.a[i][k] * b.a[k][j];
}
} return res;
} Matrix QuickPow(int n)
{
base.a[][] = base.a[][] = base.a[][] = ;
base.a[][] = ; //初始化矩阵 //结果矩阵初始化为单位阵
ans.a[][] = ans.a[][] = ;
ans.a[][] = ans.a[][] = ; while (n)
{
if (n & )
{
ans = multi(ans, base);
}
base = multi(base, base);
n >>= ;
} return ans;
} int main()
{
int n;
cin >> n; QuickPow(n);
cout << ans.a[][] << endl; return ;
}

3 动态规划

 int Fibonacci(int n) {
int a = , b = ;
int ans = ;
for(int i = ;i < n;++i) {
ans = a + b;
a = b;
b = ans;
}
return ans;
}

参考:https://www.zhihu.com/question/28062458/answer/39763094

Fibonacci Sequence的更多相关文章

  1. 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现

    最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...

  2. ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)

    1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...

  3. python实现斐波那契数列(Fibonacci sequence)

    使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...

  4. 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)

    先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...

  5. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  6. SQL Server ->> 斐波那契数列(Fibonacci sequence)

    斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...

  7. python3 求斐波那契数列(Fibonacci sequence)

    输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...

  8. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

  9. Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度

    Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...

  10. fibonacci number & fibonacci sequence

    fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...

随机推荐

  1. python-nmap 使用基础

    前言 python-nmap是一个Python库,可帮助您使用nmap端口扫描程序.它可以轻松操纵nmap扫描结果,将是一个完美的选择想要自动执行扫描任务的系统管理员的工具和报告. 它还支持nmap脚 ...

  2. 【Linux】Linux(一)Linux常用命令

    一 命令行提示符 1.[root@localhost ~]# 当前登录用户@主机名:当前所在目录$ # 超级用户 $  普通用户 当前所在目录:~ 用户家目录 管理员 /root 普通用户 /home ...

  3. 微信小程序实现滑动tab切换和点击tab切换并显示相应的数据(附源代码)

    这里主要用到了swiper组件和三目运算,直接上代码, 样式只有三个class,简单粗暴,懒的小伙伴们可以直接拿来用,喜欢的点个支持 <view> <view class=" ...

  4. 给定一个整数数组 nums 和一个目标值 target,求nums和为target的两个数的下表

    这个是来自力扣上的一道c++算法题目: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案 ...

  5. Maybatis的一些总结(三:增删改查)

    回顾一个点 之前不懂这句: UserMapper userMapper = sqlSession.getMapper(UserMapper.class); 现在理解了一点点,相当于实现了userMap ...

  6. Codeup 25594 Problem H 例题5-8 Fibonacci数列

    题目描述 输入一个正整数n,求Fibonacci数列的第n个数.Fibonacci数列的特点:第1,2个数为1,1.从第3个数开始,概述是前面两个数之和.即: 1,1,2,3,5,8,13,21 - ...

  7. k8s~helm镜像版本永远不要用latest

    对于容器编排工具k8s来说,你可以使用它规定的yaml格式的脚本,使用客户端kubectl来与k8s进行通讯,将你定义好的yaml部署脚本应用到k8s集群上,而这对yaml脚本一般来说都是很像的,就是 ...

  8. threejs创建地球

    上个月底,在朋友圈看到一个号称“这可能是地球上最美的h5”的分享,点进入后发现这个h5还很别致,思考了一会,决定要不高仿一个? 到今天为止,高仿基本完成, 线上地址 github地址 除了手机端的me ...

  9. C - 剪花布条 (KMP例题)

    一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢?  Input输入中含有一些数据,分别是成对出现的花布条和 ...

  10. LeetCode#160-Intersection of Two Linked Lists-相交链表

    一.题目 编写一个程序,找到两个单链表相交的起始节点. 如下面的两个链表: 在节点 c1 开始相交. 示例 1: 输入:intersectVal = 8, listA = [4,1,8,4,5], l ...