Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

这个沙雕题,我建图建立了一天。

题意:

每个点有一个羊蓬容量,有一个羊的数量。每个点之间的连线还有花费。问你是否能将所有的羊都赶到羊圈里,能,就输出最小花费。

思路:

每个点拆成i和N+i两个点,建立超级源点,源点到每一个点的距离都是他们现在样的数量,控制满流时的流量。N+i到汇点的距离设成点的容量。点与点之间的距离就变成了点与拆出的N+I的关系了,二分枚举时间花费,条件是能使原图满流。完事撒花。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
#define INFLL 1LL<<60
using namespace std;
const int maxn=500+10; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f; for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to, min(a,e.cap-e.flow) ) )>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int Max_Flow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC; int n,m;
int now[maxn],can[maxn];//存放每个牛栏还能放下的牛数. 为0则不能放了,>0则还有空位,<0则需要转移
long long dist[maxn][maxn];
void floyd(int n)
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dist[i][j]=min(dist[i][j], dist[i][k]+dist[k][j]);
} bool solve(long long limit,int MF)//判断只走长度<=limit的路看是否有解
{
DC.init(2*n+2,0,2*n+1);
for(int i=1;i<=n;i++)
{
DC.AddEdge(0,i,now[i]);
DC.AddEdge(i+n,2*n+1,can[i]);
} for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<=limit)
DC.AddEdge(i,j+n,INF);
return DC.Max_Flow() == MF;//判断是否满流
} int main()
{
while(scanf("%d%d",&n,&m)==2)
{
long long L=0,R=0;//二分的上下界
int MF = 0;
memset(dist,0x3f,sizeof(dist));
for(int i=1;i<=n;i++)
dist[i][i]=0;
for(int i=1;i<=n;i++)
{
int v1,v2;
scanf("%d%d",&now[i],&can[i]);
MF +=now[i];//记录满流量
}
for(int i=1;i<=m;i++)
{
int u,v;
long long w;
scanf("%d%d%I64d",&u,&v,&w);
dist[u][v]=dist[v][u]=min(dist[u][v],w);
}
floyd(n);//计算最短路径
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<INFLL)
R=max(R,dist[i][j]);
if(!solve(R, MF)) printf("-1\n");
else
{
while(R>L)
{
long long mid = L+(R-L)/2;
if(solve(mid,MF)) R=mid;
else L=mid+1;
//cout<<mid<<endl;
}
printf("%I64d\n",L);
}
}
return 0;
}

网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)的更多相关文章

  1. Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖

    题意:图没什么用  给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖       最小路径覆盖=|G|-最大匹配数 ...

  2. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  3. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  4. poj 1459 多源汇网络流 ISAP

    题意: 给n个点,m条边,有np个源点,nc个汇点,求最大流 思路: 超级源点把全部源点连起来.边权是该源点的最大同意值: 全部汇点和超级汇点连接起来,边权是该汇点的最大同意值. 跑最大流 code: ...

  5. 图论--差分约束--POJ 3169 Layout(超级源汇建图)

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 < ...

  6. 图论--网络流--费用流--POJ 2156 Minimum Cost

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  7. 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)

    Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...

  8. hdu 2732 Leapin' Lizards (最大流 拆点建图)

    Problem Description Your platoon of wandering lizards has entered a strange room in the labyrinth yo ...

  9. hdu4560 不错的建图,二分最大流

    题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...

随机推荐

  1. Java第三天,如何从键盘输入?匿名对象的使用方法

    在学习完Java的基础语法之后,我们还需要学会如何使用API文档,这几乎是程序员所必备的能力.对于API我们不必须去记住每一个类的功能乃至用法,只需会查就行了.但是话说回来,一些经常使用的类我们还是必 ...

  2. 从JDK源码学习HashSet和HashTable

    HashSet Java中的集合(Collection)有三类,一类是List,一类是Queue,再有一类就是Set. 前两个集合内的元素是有序的,元素可以重复:最后一个集合内的元素无序,但元素不可重 ...

  3. MODIS系列之NDVI(MOD13Q1)二:modis数据相关信息

    1.MODIS数据的特点 (1)全球免费:NASA对MODIS数据实行全球免费接收的政策(TERRA卫星除MODIS外的其他传感器获取的数据均采取公开有偿接收和有偿使用的政策),这样的数据接收和使用政 ...

  4. MAC设置开机启动

    mac将使用launchctl做为开机启动工具,launchctl将根据plist文件的信息来启动任务.plist脚本一般存放在以下目录: l /Library/LaunchDaemons --> ...

  5. 数据结构篇-数组(TypeScript版+Java版)

    1.TypeScript版本 export default class MyArray<E> { public data: E[]; public size: number = 0; /* ...

  6. 假的数论gcd,真的记忆化搜索(Codeforce 1070- A. Find a Number)

    题目链接: 原题:http://codeforces.com/problemset/problem/1070/A 翻译过的训练题:https://vjudge.net/contest/361183#p ...

  7. F - Select Half dp

    题目大意:从n个数里边选n/2个数,问和最大是多少. 题解:这是一个比较有意思的DP,定义状态dp[i][1],表示选了第i个数的最优状态,dp[i][0]表示没有选第i个数的最优状态. 状态是如何转 ...

  8. C. Standard Free2play --div

    https://codeforces.com/contest/1238/problem/C 题意:下台阶的时候只有一种方式,拉动当前台阶x的 level,然后当前的台阶关闭,调到下边的台阶x-1,如果 ...

  9. java中如何理解:其他类型 + string 与 自增类型转换和赋值类型转换

    java中如何理解:其他类型 + string 与 自增类型转换和赋值类型转换 一.字符串与其他类型连接 public class DemoString{ public static void mai ...

  10. skynet启动流程及调用服务

     3.基本原理 3.1启动流程  1.skynet-src/skynet_main.c 这个是main()函数所在,主要就是设置一下lua的环境.默认的配置.打开config配置文件,并修改默认配置. ...