小阳的贝壳

如果线段树要维护区间gcd 这个很简单,但是如果有了区间加,维护gcd 就比较麻烦了。

这个首先可以证明的是 gcd(x,y,z)=gcd(x,y-x,z-y)   这个可以推到 n 个

证明过程传送门

这个就和差分扯上关系了   可以看一下差分 差分传送门

上面的这两个博客基本上告诉我们这两个题目怎么写了。

首先我们对于每一个数进行处理,把这个数变成差分的形式,

因为最后的结果我们要 gcd(x,y-x,z-y) 所以我们要求和,还有求gcd ,这个就会有两个查询,一个查询sum,一个查询gcd

你看了差分的博客后你就发现,如果我们要给一段区间整体加上一个值,这个区间更新可以转化成差分的单点更新。

然后就是区间差值最大,这个很好求,因为我们每一个数本来放进去的就是区间的差分,所以这个相当于在求最大值。只是注意边界。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
#include <map>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int maxn = 2e5 + ;
int a[maxn];
struct node
{
int l, r;
int max, sum, val;
}tree[maxn*]; int gcd(int a,int b)
{
return b == ? a : gcd(b, a%b);
} void push_up(int id)
{
tree[id].max = max(abs(tree[id << ].max), abs(tree[id << | ].max));
tree[id].sum = tree[id << | ].sum + tree[id << ].sum;
tree[id].val = gcd(tree[id << ].val, tree[id << | ].val);
} void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
if(l==r)
{
tree[id].sum = tree[id].val = a[l];
tree[id].max = abs(a[l]);
return;
}
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
push_up(id);
} int query_sum(int id,int x,int y)
{
int l = tree[id].l;
int r = tree[id].r;
if(x<=l&&y>=r)
{
return tree[id].sum;
}
int ans = ;
int mid = (l + r) >> ;
if (x <= mid) ans += query_sum(id << , x, y);
if (y > mid) ans += query_sum(id << | , x, y);
return ans;
} int query_val(int id,int x,int y)
{
int l = tree[id].l;
int r = tree[id].r;
if(x<=l&&y>=r)
{
return tree[id].val;
}
int ans = ;
int mid = (l + r) >> ;
if (x <= mid) ans = gcd(ans, query_val(id << , x, y));
if (y > mid) ans = gcd(ans, query_val(id << | , x, y));
return ans;
} int query_max(int id,int x,int y)
{
int l = tree[id].l;
int r = tree[id].r;
if(x<=l&&y>=r)
{
return tree[id].max;
}
int ans = ;
int mid = (l + r) >> ;
if (x <= mid) ans = max(ans, query_max(id << , x, y));
if (y > mid) ans = max(ans, query_max(id << | , x, y));
return ans;
} void update(int id,int pos,int x)
{
int l = tree[id].l;
int r = tree[id].r;
if(l==r)
{
tree[id].sum += x;
tree[id].val += x;
tree[id].max = abs(tree[id].val);
return;
}
int mid = (l + r) >> ;
if (pos <= mid) update(id << , pos, x);
else update(id << | , pos, x);
push_up(id);
} int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for (int i = n; i >= ; i--) a[i] = a[i] - a[i - ];
build(, , n);
while (m--) {
int opt, l, r, x;
scanf("%d", &opt);
if(opt==)
{
scanf("%d%d%d", &l, &r, &x);
if (l > r) swap(l, r);
update(, l, x);
if(r+<=n) update(, r + , -x);
}
if(opt==)
{
scanf("%d%d", &l, &r);
if (l > r) swap(l, r);
int ans = ;
if(l!=r) ans = query_max(, l + , r);
printf("%d\n", ans);
}
if(opt==)
{
scanf("%d%d", &l, &r);
if (l > r) swap(l, r);
int ans = ;
int ex1 = query_sum(, , l);
int ex2 = query_val(, l + , r);
if (l == r) ans = ex1;
else ans = abs(gcd(ex1, ex2));
printf("%d\n", ans);
}
// if(opt==4)
// {
// scanf("%d", &l);
// printf("%d\n", query_sum(1, 1, l));
// }
}
return ;
}

gcd 线段树 差分

线段树 区间加 gcd 差分 小阳的贝壳的更多相关文章

  1. 【CF52C】Circular RMQ(线段树区间加减,区间最值)

    给定一个循环数组a0, a1, a2, …, an-1,现在对他们有两个操作: Inc(le, ri, v):表示区间[le, ri]范围的数值增加v Rmq(le, ri):表示询问区间[le, r ...

  2. vijos 1659 河蟹王国 线段树区间加、区间查询最大值

    河蟹王国 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 https://vijos.org/p/1659 Description 河蟹王国有一位河蟹国王,他 ...

  3. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  4. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  5. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  6. 2015 UESTC 数据结构专题B题 秋实大哥与花 线段树 区间加,区间查询和

    B - 秋实大哥与花 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/59 De ...

  7. COGS.1272.[AHOI2009]行星序列(线段树 区间加、乘、求和)

    题目链接 //注意取模! #include<cstdio> #include<cctype> using namespace std; const int N=1e5+5; i ...

  8. hdu4521-小明系列问题——小明序列(线段树区间求最值)

    题意:求最长上升序列的长度(LIS),但是要求相邻的两个数距离至少为d,数据范围较大,普通dp肯定TLE.线段树搞之就可以了,或者优化后的nlogn的dp. 代码为  线段树解法. #include ...

  9. 「模板」 线段树——区间乘 && 区间加 && 区间求和

    「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...

随机推荐

  1. Linux的文本编辑和文本内容查看命令

    Linux的文本编辑和文本内容查看命令 1.文本编辑命令 vi:用于编辑文本文件,基本上可以分为三种模式,分别是一般模式.编辑模式.命令行模式.    一般模式:当编辑一个文件时,刚进入文件就是一般模 ...

  2. Weblogic-SSRF 漏洞复现

    0x01 环境搭建 我这里使用的是vulhub,它几乎包含了所有的漏洞环境.(建议安装在ubuntu上) 有需要的小伙伴来企鹅群自取. 安装好vulhub之后需要cd 到weblogic ssrf 目 ...

  3. AJ学IOS 之微博项目实战(13)发送微博调用相机里面的图片以及调用相机

    AJ分享,必须精品 一:效果 二:代码 相机部分就简单多了,几行代码调用而已,但是如果你要是想实现更多丰富的功能,需要自己写.利用AssetsLibrary.framework,利用这个框架可以获得手 ...

  4. 知识点二:HTTP超文本文件传输协议

    HTTP超文本传输协议概念: http1.1之前采用非持续链接服务器在建立连接上开销较大,http1.1之后默认采用持续连接,并有超时设置 http协议:超文本文件传输协议,用于传输文本文件,请求的方 ...

  5. spring源码阅读笔记08:bean加载之创建bean

    上文从整体视角分析了bean创建的流程,分析了Spring在bean创建之前所做的一些准备工作,并且简单分析了一下bean创建的过程,接下来就要详细分析bean创建的各个流程了,这是一个比较复杂的过程 ...

  6. BUUOJ [BJDCTF 2nd]elementmaster

    [BJDCTF 2nd]elementmaster 进来就是这样的一个界面,然后就查看源代码 转换之后是Po.php,尝试在URL之后加上看看,出现了一个“.“ ....... 迷惑 然后看了wp 化 ...

  7. [PHP] 调用微博API 发微博OAuth2.0

    在实际测试中出现很多问题, 第一就是按照文档调用ACCESS_TOKEN的时候费老劲啦,因为是编辑线上的,有好多中文空格,没有看出来!整了好久! 第二个就是在调用api发微博的时候出现乱码!必须把发送 ...

  8. react: typescript project initialize

    Initialize the project create a folder project Now we’ll turn this folder into an npm package. npm i ...

  9. python os模块获取指定目录下的文件列表

    bath_path = r"I:\ner_results\ner_results" dir_list1 = os.listdir(bath_path) for dir1 in di ...

  10. 对JavaScript中原型及原型链的理解

    什么是原型:  1,我们所创建的每一个函数,解析器都会向该函数对象添加一个属性prototype,这个属性指向一个对象,这个对象就是我们所谓的原型对象 2,如果我们将函数作为普通函数调用时,proto ...